• Title/Summary/Keyword: 유회수율

Search Result 5, Processing Time 0.016 seconds

An Experimental Study on the Recovery of Diesel Oil Using a Drum Type Skimmer (드럼식 유회수기의 디젤유 회수에 관한 실험적 연구)

  • Song Dong-Eub;Jung Song-Whoan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.52-66
    • /
    • 2003
  • Generally we have difficulty in removing oil using mechanical devices because recovery rate and recovery efficiency decrease remarkably when operating in thin oil films or in oils of very high viscosity In the Present study a series of experiments were carried out to study the effect of operating conditions on the rate of recovery for the spilled oil using a drum type skimmer. For each set of experiments depth of immersion, oil film thickness and the circumferential speeds were varied systematically to find the effects on the recovery rate. The results shows that recovery rate is dependent on the contact angle for the depth of immersion and the highest rate of oil recovery shows in the case of a contact angle of 45°(h/d=0.15). For the removal of spilled oil the optimal circumferential speed can be found as the critical value to reach the saturated recovery rate for a given oil film thickness and depth of immersion. Even in thin oil thickness we have enough recovery rate and recovery efficiency within critical circumferential speed this way.

  • PDF

Development of Oil Skimmer with Submerged Orifice (잠수공(潛水孔) 수로를 가진 유회수기 개발)

  • Kou, Heung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.457-464
    • /
    • 2010
  • Representative methods for removing spilled oil include mechanical skimming, chemical treatment, burning at the surface of the spilled oil, and microbiological degradation. Among these methods, mechanical skimmer is the most efficient. Mechanical skimming can be classified into the following categories: belt-type, disk-type, weir-type, drum-type. We designed models with a submerged orifice for use in our experiments, for an objective and systematic evaluation of the recovery efficiency of mechanical skimming. Basically, oil is lighter than seawater and hence tends to float on the surface of the latter if there is sufficient time for floating. The present skimmer is kind of wear-type with the submerged orifice for seawater to be squeezed through, minimizing water content in the tank. From the experimental results, we identify the parameters that influence the oil recovery rate and recovery efficiency. The recovery efficiency can be enhanced by increasing the thickness of the oil layer in the first oil accumulative tank.

Investigation on the recovery rate of adhesion-type oil skimmers (흡착식 유회수기의 회수율 추정에 관한 연구)

  • 김장환;현범수
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.124-131
    • /
    • 1997
  • 흡착식 유회수기의 운전조건을 결정하는데 있어서 스키머의 구동속도와 기름의 물리.화학적 성질에 따른 스키머의 유회수율을 예측하는 것이 필요하다. 이 문제에 대한 이론적인 접근으로 수직구동 평판상에 부착된 기름층의 자유표면유동을 두가지 방법으로 조사하였다. 그 하나는 표면코팅시 얇은 유막에 대하여 수행하는 정상유동해석이며, 다른 방법으로는 스키머 표면유막에 대한 안정성해석이다. 해석은 기름층이 충분히 두꺼워서 스키머는 기름층에서만 작동한다고 가정하였다. 이론추정 결과는 롤러타입의 스키머에 대하여 계측한 실험치와 비교하였는데, 유막의 안정성해석 결과가 유회수기와 같이 상대적으로 고레이놀즈수에서 작동하는 유동의 경우에는 정상해석보다 좀 더 합리적으로 유막의 두께를 산정함을 알 수 있었다. 한편, 물위에 떠있는 얇은 유막층의 유회수성능도 실험하여서 주어진 유막두께에 대하여 롤러의 최적구동속도를 함께 조사하였다.

  • PDF

A Study on the Nondimensional Analysis for the Recovery Rate of Oil Using a Belt Type Skimmer (벨트식 유회수기의 유회수율 데이터의 무차원화 과정에 관한 연구)

  • Yoon Kyunghwan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.34-39
    • /
    • 1999
  • Removal of spilled oil over the sea and the river has become one of the urgent problems in these days. Removing oil using mechanical devices by adhesion method is known to be closely related with the problem of estimating the thickness of film remaining on the surface of solid withdrawn from a quiescent liquid. In the present study a series of experimental results are compared with the analytic estimation for the thickness of film remaining on the solid surface using non-dimensional analysis. For the case of pure water both results show the remarkable agreement. However, discrepancy has been found for the case of Bunker C oil and diesel oil. The analytic estimation over-predicts the experimental value for the case of Bunker C oil and under-predicts it for the case of diesel oil. Further study is required to investigate the real situation including a contact angle and the property difference between oil and water.

  • PDF

An experimental study for the effect of rotational direction on the recovery rate of spilled oil using a belt skimmer (벨트식 유회수기의 회전방향이 유회수율에 미치는 영향에 관한 실험적 연구)

  • Song, Dong-Eop;Yun, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.679-690
    • /
    • 1997
  • Oil spill over the sea and the river become a serious problem in these days. Two different approaches are used to clean up the spilled oil by means of chemical dispersion and mechanical devices. If it is possible, removing spilled oil using mechanical devices are highly desirable in order not to worry about the secondary contamination from chemical treatment. One of the major unsolved problems using mechanical devices has been the recovery of highly viscous oil spill. So, the systematic experimental data for treating very viscous oil are still wanting. In the present study a series of experiments were carried out to study the effect of the rotational direction of the belt skimmer on the rate of oil recovery using Bunker C oil. Three different situations, namely, upward, downward and up-and-downward pickup rate have been investigated for variable belt speed. The results showed that the rate of oil recovery for downward pickup was much higher than that for upward pickup. The major mechanism to recover the oil using a belt skimmer has been confirmed that oil sticks to the belt surface while moving to the water rather than moving upward. For the removal of spilled oil the optimal belt speed under the present experimental conditions was found to be about 200 ~ 270 mm/s just before the starvation started. The present experimental results would provide the basis for understanding the performance characteristics and physics of various types of skimmers.