• Title/Summary/Keyword: 유화능

Search Result 88, Processing Time 0.028 seconds

Emulsification of O/W Emulsion Using Natural Mixed Emulsifiers : Optimization of Emulsion Stability Using Central Composite Design-Reponse Surface Methodology (천연 혼합유화제를 이용한 O/W 유화액의 제조 : 중심합성계획모델을 이용한 유화안정성 최적화)

  • Seheum Hong;Cuiwei Chen;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.299-306
    • /
    • 2023
  • In this study, the O/W emulsification processes with the natural surfactants that were extracted from Medicago sativa L. and Sapindus saponaria L. as emulsifiers were optimized using the central composite design-response surface methodology (CCD-RSM). Herein, independent parameters were the amounts of mixed emulsifiers, the mixing ratio of natural emulsifiers (soapberry saponin/alfalfa saponin), and the emulsification time, whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and antioxidant activity (DPPH radical scanvenging activity). Through basic experiments, the ranges of operation variables for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 12~14 wt%, 30~70%, and 20~30 min, respectively. The optimum operation variables deduced from CCD-RSM for the amount of mixed emulsifiers, the mixing ratio of natural emulsifiers, and the emulsification time were 13.2 wt%, 44.2%, and 25.8 min, respectively. Under these optimal conditions, the expected values of the ESI, MDS, and antioxidant activity were 88.7%, 815.5 nm, and 38.7%, respectively. And, the measured values of the ESI, MDS, and antioxidant activity were 90.6%, 830.2 nm, and 39.6%, respectively, and the average experimental error for validating the accuracy was about 2.1%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process using CCD-RSM.

Demulsification of Petroleum Emulsion by Streptomyces sp. 8321 (Streptomyces sp. 8321에 의한 석유 유상액의 탈유화)

  • Ko, Sung-Hwan;Lee, Deuk-Soo;Kim, Sang-Jin;Lee, Hong Kum
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.162-168
    • /
    • 1998
  • The characteristics of demulsification of petroleum emulsion by Streptomyces sp. 8321 were investigated. Demulsification ability of Streptomyces sp. 8321 appeared to be confined within the spores. Spore surface hydrophobicity was increased with culture age stimulating the demulsification ability. Over $1.1{\times}10^8spores/ml$ completely demulsified kerosene-0.2% Triton X-100 (2:1) emulsion. Among the low viscosity hydrocarbons, hydrocarbons with longer chain such as n-hexadecane and diesel were more rapidly demulsified. However, only 20-30% of the emulsion with high viscosity hydrocarbons was demulsified after 24 hours. Oil-in-water emulsions made by Corexit, Finalsol and BP series surfactants were completely demulsified within one minute. Demulsification rate ($t_{1/2}$) of oil-in-water emulsions made by Corexit 7664, 8667, Triton X-100 and Tween 80 decreased as their concentration increased. In case of water-in-oil emulsion made by Seagreen, $t_{1/2}$ was over 24 hours. Therefore, demulsification ability of Streptomyces sp. 8321 was more effective on oil-in-water emulsions.

  • PDF

Characterization Study of Crude Oil Degrading Microbiology Isolated from Incheon Bay (인천 연안에서 분리한 원유 분해 미생물의 특성 연구)

  • Choi, Hye Jin;Oh, Bo Young;Han, Young Sun;Hur, Myung Je;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.24 no.6
    • /
    • pp.694-699
    • /
    • 2014
  • Indigenous microorganisms play decisive roles in biodegradation. In this study, eighty strains of hydrocarbon-degrading microbes were isolated from Incheon Bay. Among them, 12 strains were selected by an oil film collapsing method. The bacterial strain 'Incheon9' was eventually selected based on its relatively higher lipase and emulsification activities, and was identified as Acinetobacter sp. (NCBI accession code: KF54854). The optimum condition for the growth and emulsification activity of Acinetobacter sp. Incheon9 was $20^{\circ}C$, pH 7, and 1% NaCl. The optimum time for the best production of biosurfactant was 72 hrs. The oil degradation ability of Acinetobacter sp. Incheon9 was investigated by measuring the residual oils in the culture medium by gas chromatography (FID). This research provides foundational data for eco-friendly environmental remediation by microorganisms.

고기능성 생물유화제를 첨가한 어묵의 제조

  • Jeon, Byeong-Jin;Im, Dong-Jung;Hwang, Seon-Hui;Choe, Yeong-Jun;Gong, Jae-Yeol
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.657-661
    • /
    • 2003
  • Pseudomonas aerugenosa BYK-2로부터 분리해낸 biosurfactant는 0.05% NaCl. pH 5에서 비교적 우수한 유화안정성을 보였고, pH 및 이온강도가 증가함에 따라 유화능 및 유화안정성이 감소하는 경향을 보였다. 생물유화제를 각 농도별로 첨가하여 어육소세지의 물성을 조사한 결과 0.1 % 첨가구가 deformation 9.45 mm, force는 119.2 g으로 다른 첨가구에 비해 높은 수치를 나타낸 반면, whiteness는 생물유화제를 첨가하지 않은 것에 비해서 점차 감소하는 경향을 나타내었다. 또한 천연 유화물과 타 유화제의 첨가에 따른 어육 소세지의 물성에 대한 효과를 알아보기 위해 각각 또는 복합적으로 첨가하여 물성과 색차를 측정한 결과 천연유화물의 고유한 색깔로 인해 whiteness는 감소하였으나, deformation이 다른 유화제에 비해서 월등히 증가하는 경향을 보였고, force 값 또한 증가하는 경향을 보였다.

  • PDF

Characterization of Diesel Oil-Degrading Bacteria (디젤유 분해균주의 특성 및 토양배양)

  • 안민정;한윤전;임현섭;최기현;권오범;정병철
    • Korean Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.108-113
    • /
    • 2003
  • Diesel oil-degrading bacterial strains were isolated from diesel oil contaminated soil and called HS series (HS1, HS2 and HS3). These strains were identified as Acinetobacter sp. (HS1) and Pseudomonas sp. (HS2 and HS3) based on Biolog test, cellular fatty acid composition, and 16S rDNA sequence analysis. These strains were coltivated in liquid minimal media containing 2% diesel oil, and diesel oil-degrading activity was measured. As result, all strains degraded over 70% of total diesel oil. But PAH (polycyclic aromatic hydrocarbon)- and pris- tane-degrading rate of these strain was below 20% of total PAH and pristane. The HS 1 strain showed highest hydrophobicity and low emulsifying activity among the experimental strains and high diesel oil-degrading activity. From the above-mentioned result, microcosm experiment was performed with the HS1 strain. The HS1 strain showed a degrading activity of over 80% of total diesel oil in microcosm test. And microbial activity was correlated to diesel oil-degrading activity. Therefore, it is suggested that the HS1 strains could be effectively used for the bioremediation for diesel oil.

P. aeruginosa EMS1의 mutagen 처리를 통한 고기능 유화재 균주의 개발

  • Lee, Geun-Hui;Lee, O-Mi;Kim, Gi-Han;Cha, Mi-Seon;Son, Hong-Ju;Lee, Sang-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.556-557
    • /
    • 2001
  • This study was performed to improve the efficency of production of biosudactant which were produced by newly screened MNNGCN-Methyl-N-Nitro- Nitrosoguanidine) mutagenized P. aeruginosa EMS1. A culture grown exponentially for $30^{\circ}C$ in trypic soy brotb is adjusted to pH. MNNG is added and incubated in water bath shaker at about 250 ${\sim}$300rpm. After 20 min, is dilutecl into colded trypic soy broth and centrifugation. The cell pellet is resuspended in 50$m{\ell}$ of trypic soy broth. Cultures are grown at $30^{\circ}C$ overnight. cetyltrimethylammonium bromide-metbylene blue agar plate selected dark blue halo colony. Peanut oil, Castor oil, Olive oil, and so on were compared as carbon source of surface tension and emulsifying activity.

  • PDF

P. aeruginosa EMS1의 mutagen 처리를 통한 고기능 유화제 생산 균주 개발 및 유전자 확인

  • 이근희;한창민;이준훈;이경민;차미선;이상준
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2001.05a
    • /
    • pp.244-245
    • /
    • 2001
  • 산폐유의 농도를 l~8% 까지 단계별로 조정하여 P. aeruginosa EMS1과 mutant strain A34의 유화활성 및 생육도, 표면장력 등을 서로 비교하였다. P. aeruginosa의 경우 1%의 산폐유가 첨가되었을 때 유화활성이 가장 높았으며, 1~3%까지 유화활성이 높게 나타났으며, mutant strain의 경우 2%에서 가장 높은 유화활성 값을 나타내었고, 1~3%까지 유화활성이 높게 유지되었다. P. aeruginosa EMS1 및 mutant strain A34 모두 4% 농도에서 가장 높게 나타났다. 표면장력과 biosurfactant의 상대적인 양을 나타내는 Fcmc의 경우 P. aeruginosa EMS1 보다 mutant strain A34가 우수하게 나타났다. PCR 결과 P. aeruginosa EMS1은 rhlamnolipid의 coding 유전자인 rhlRAB gene을 가지는 것으로 확인되었다.

  • PDF

Isolation and Characterization of Biosurfactant from Bacillus atrophaeus DYL,-130 (Bacillus atrophaeus DYL-130이 생산하는 biosurfactant의 분리 및 특성)

  • Kim Sun-Hee;Lee Sang-Cheol;Park In-Hye;Yoo Ju-Soon;Joo Woo-Hong;Hwang Cher-Won;Choi Young-Lark
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.679-684
    • /
    • 2005
  • The objective of this study was investigate the characteristic of biosurfactant produced from the iso-lated strain. The strain was isolated from soli samples of Duck-Yu Mountain and it was identified as Bacillus atrophaeus DYL-130 by 16S rDNA and gyrA gene nucleotide sequence analysis. The surface ten-sion of culture filtrate of Bacillus atrophaeus DYL-130 decreased to 28 mN/m and its biosurfactant con-centration was determined by diluting the culture filtrate until the critical micelle concentration (CMC). The emulsifying activity and stability of crude biosurfactant was measured by using water-immiscible hydrocarbons and oils as substrate. The biosurfactant was purified by affinity chromatography and the surface activity of purified biosurfactant was measured by drop-collapsing method and it could be effectively emulsify toluene.

Characteristics of Biosurfactant Producing Pseudomonas sp. HN37 (생물계면활성제 생성 세균 Pseudomonas sp. HN37의 특성)

  • Jung, Da Hee;Chang, Dong Ho;Kim, Yeong Eun;Jeong, Mi Rang;Hahn, Kyu Woong;Kim, Hyong Bai;Park, Kyeong Ryang
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.33-39
    • /
    • 2014
  • One hundred forty four bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in Daejeon area. Among them, one bacterial strain was selected for this study based on its emulsification activity, growth rate and surface tension activity, and this selected bacterial strain was identified as Pseudomonas sp. HN37 through physiological- biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. HN37 utilize the several aliphatic hydrocarbons, 3,5-dinitrosalicylic acid and 2,4-dichlorophooxyacetic acid as a sole carbon source. And this bacterial strain showed a high resistance to antibiotics such as ampicillin and chloramphenicol, as well as heavy metals such as Ba, Cr, Li and Mn. Also, it was found that the optimal pH and temperature for the cell growth, surface tension, and emulsification activity of Pseudomonas sp. HN37 were pH 6.0-9.0 and $30^{\circ}C$, respectively. The emulsification and surface tension activity was reached the maximum to 1% (V/V) crude oil and 1% (W/V) NaCl concentration. The surface tension of the culture broth was decreased from 62 to 27 dyne/cm after fifteen hours of inoculation in LB media.