• Title/Summary/Keyword: 유한 차분 방법

Search Result 395, Processing Time 0.025 seconds

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

Eigenimage-Based Signal Processing for Subsurface Inhomogeneous Clutter Reduction in Ground-Penetrating Radar Images (지하 탐사 레이더 영상에서 지하의 비균일 클러터 저감을 위한 고유 영상기반 신호처리)

  • Hyun, Seung-Yeup;Kim, Se-Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.11
    • /
    • pp.1307-1314
    • /
    • 2012
  • To reduce the effects of clutters with subsurface inhomogenities in ground-penetrating radar(GPR) images, an eigenimage based signal-processing technique is presented. If the conventional eigenimage filtering technique is applied to B-scan images of a GPR survey, relatively homogeneous clutters such as antenna ringing, direct coupling between transmitting and receiving antennas, and soil-surface reflection, can be removed sufficiently. However, since random clutters of subsurface inhomogenities still remain in the images, target signals are distorted and obscured by the clutters. According to a comparison of the eigenimage filtering results, there is different coherency between subsurface clutters and target signals. To reinforce the pixels with high coherency and reduce the pixels with low coherency, the pixel-by-pixel geometric-mean process after the eigenimage filtering is proposed here. For the validity of the proposed approach, GPR survey for detection of a metal target in a randomly inhomogeneous soil is numerically simulated by using a random media generation technique and the finite-difference time-domain(FDTD) method. And the proposed signal processing is applied to the B-scan data of the GPR survey. We show that the proposed approach provides sufficient enhancement of target signals as well as remarkable reduction of subsurface inhomogeneous clutters in comparison with the conventional eigenimage filtering.

Comparison of performance of automatic detection model of GPR signal considering the heterogeneous ground (지반의 불균질성을 고려한 GPR 신호의 자동탐지모델 성능 비교)

  • Lee, Sang Yun;Song, Ki-Il;Kang, Kyung Nam;Ryu, Hee Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.4
    • /
    • pp.341-353
    • /
    • 2022
  • Pipelines are buried in urban area, and the position (depth and orientation) of buried pipeline should be clearly identified before ground excavation. Although various geophysical methods can be used to detect the buried pipeline, it is not easy to identify the exact information of pipeline due to heterogeneous ground condition. Among various non-destructive geo-exploration methods, ground penetration radar (GPR) can explore the ground subsurface rapidly with relatively low cost compared to other exploration methods. However, the exploration data obtained from GPR requires considerable experiences because interpretation is not intuitive. Recently, researches on automated detection technology for GPR data using deep learning have been conducted. However, the lack of GPR data which is essential for training makes it difficult to build up the reliable detection model. To overcome this problem, we conducted a preliminary study to improve the performance of the detection model using finite difference time domain (FDTD)-based numerical analysis. Firstly, numerical analysis was performed with homogeneous soil media having single permittivity. In case of heterogeneous ground, numerical analysis was performed considering the ground heterogeneity using fractal technique. Secondly, deep learning was carried out using convolutional neural network. Detection Model-A is trained with data set obtained from homogeneous ground. And, detection Model-B is trained with data set obtained from homogeneous ground and heterogeneous ground. As a result, it is found that the detection Model-B which is trained including heterogeneous ground shows better performance than detection Model-A. It indicates the ground heterogeneity should be considered to increase the performance of automated detection model for GPR exploration.

Crosshole EM 2.5D Modeling by the Extended Born Approximation (확장된 Born 근사에 의한 시추공간 전자탐사 2.5차원 모델링)

  • Cho, In-Ky;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.127-135
    • /
    • 1998
  • The Born approximation is widely used for solving the complex scattering problems in electromagnetics. Approximating total internal electric field by the background field is reasonable for small material contrasts as long as scatterer is not too large and the frequency is not too high. However in many geophysical applications, moderate and high conductivity contrasts cause both real and imaginary part of internal electric field to differ greatly from background. In the extended Born approximation, which can improve the accuracy of Born approximation dramatically, the total electric field in the integral over the scattering volume is approximated by the background electric field projected to a depolarization tensor. The finite difference and elements methods are usually used in EM scattering problems with a 2D model and a 3D source, due to their capability for simulating complex subsurface conductivity distributions. The price paid for a 3D source is that many wavenumber domain solutions and their inverse Fourier transform must be computed. In these differential equation methods, all the area including homogeneous region should be discretized, which increases the number of nodes and matrix size. Therefore, the differential equation methods need a lot of computing time and large memory. In this study, EM modeling program for a 2D model and a 3D source is developed, which is based on the extended Born approximation. The solution is very fast and stable. Using the program, crosshole EM responses with a vertical magnetic dipole source are obtained and the results are compared with those of 3D integral equation solutions. The agreement between the integral equation solution and extended Born approximation is remarkable within the entire frequency range, but degrades with the increase of conductivity contrast between anomalous body and background medium. The extended Born approximation is accurate in the case conductivity contrast is lower than 1:10. Therefore, the location and conductivity of the anomalous body can be estimated effectively by the extended Born approximation although the quantitative estimate of conductivity is difficult for the case conductivity contrast is too high.

  • PDF

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part II. Model Implementation (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: II. 모형적용)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.3
    • /
    • pp.23-27
    • /
    • 2008
  • The new conjunctive surface-subsurface flow model at a large scale was developed by using a 1-D Diffusion Wave (DW) model for surface flow interacting with the 3-D Volume Averaged Soil-moisture Transport (VAST) model for subsurface flow for the comprehensive terrestrial water and energy predictions in Land Surface Models (LSMs). A selection of numerical implementation schemes is employed for each flow component. The 3-D VAST model is implemented using a time splitting scheme applying an explicit method for lateral flow after a fully implicit method for vertical flow. The 1-D DW model is then solved by MacCormack finite difference scheme. This new conjunctive flow model is substituted for the existing 1-D hydrologic scheme in Common Land Model (CLM), one of the state-of-the-art LSMs. The new conjunctive flow model coupled to CLM is tested for a study domain around the Ohio Valley. The simulation results show that the interaction between surface flow and subsurface flow associated with the flow routing scheme matches the runoff prediction with the observations more closely in the new coupled CLM simulations. This improved terrestrial hydrologic module will be coupled to the Climate extension of the next-generation Weather Research and Forecasting (CWRF) model for advanced regional, continental, and global hydroclimatological studies and the prevention of disasters caused by climate changes.

A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case - (실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 -)

  • Jang, Hyuk Soo;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.15-26
    • /
    • 2014
  • This study focus on a economic value of the Big Data technologies by real options model using big data technology company's stock price to determine the price of the economic value of incremental assessed value. For estimating stochastic process of company's stock price by big data technology to extract the incremental shares, Generalized Moments Method (GMM) are used. Option value for Black-Scholes partial differential equation was derived, in which finite difference numerical methods to obtain the Big Data technology was introduced to estimate the economic value. As a result, a option value of big data technology investment is 38.5 billion under assumption which investment cost is 50 million won and time value is a about 1 million, respectively. Thus, introduction of big data technology to create a substantial effect on corporate profits, is valuable and there are an effects on the additional time value. Sensitivity analysis of lower underlying asset value appear decreased options value and the lower investment cost showed increased options value. A volatility are not sensitive on the option value due to the big data technological characteristics which are low stock volatility and introduction periods.

Varied Flow Analysis for Linear Drainage Channels (선형 배수로에 대한 부등류 해석)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.773-784
    • /
    • 2008
  • The present study was carried out to examine flow properties in linear drainage channels such as road surface drainage facilities. The finite difference formulation for the varied flow analysis was solved for flow profiles in the channels. Starting the first step at the control section, the Newton-Raphson method was applied for producing numerical solutions of the equation. We considered two types of linear drainage channels, a channel with one outlet at downstream end and a channel with two outlets at both ends. Moreover, the flow analysis for various channel slopes was performed. However, we considered channels with the two outlets of slopes satisfying the condition that the both ends are the control section. The maximum of those slopes was decided from the relation between the channel slope and the location of control section. The flow of a channel with one outlet was calculated upward and downward from the control section existing in channel or upward from the control section at downstream end. The flow of a channel with two outlets at both ends were calculated for upstream and downstream channel segments divided by the water dividend, respectively and the flow analysis was completed when the water depth at the water dividend calculated from upstream end was equal to that calculated from downstream end. If the slope was larger than the critical slope, the channel with two outlets was likely to behave like the channel with one outlet. The maximum water depth was investigated and compared with that calculated additionally from the uniform flow analysis. The uniform flow analysis was likely to lead a excessive design of a drainage channel with mild slope.

Effect of Gas now Modulation on Etch Depth Uniformity for Plasma Etching of 150 mm GaAs Wafers (150 mm GaAs 웨이퍼의 플라즈마 식각에서 식각 깊이의 균일도에 대한 가스 흐름의 최적화 연구)

  • 정필구;임완태;조관식;전민현;임재영;이제원;조국산
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • We developed engineering methods to control gas flow in a plasma reactor in order to achieve good etch depth uniformity for large area GaAs etching. Finite difference numerical method was found quite useful for simulation of gas flow distribution in the reactor for dry etching of GaAs. The experimental results in $BCl_3/N_2/SF_6/He$ ICP plasmas confirmed that the simulated data fitted very well with real data. It is noticed that a focus ring could help improve both gas flow and etch uniformity for 150 mm diameter GaAs plasma etch processing. The simulation results showed that optimization of clamp configuration could decrease gas flow uniformity as low as $\pm$ 1.5% on an 100 mm(4 inch) GaAs wafer and $\pm$ 3% for a 150 m(6 inch) wafer with the fixed reactor and electrode, respectively. Comparison between simulated gas flow uniformity and real etch depth distribution data concluded that control of gas flow distribution in the chamber would be significantly important in order or achieve excellent dry etch uniformity of large area GaAs wafers.

The Estimation of the Uplift Pressure and Seepage Discharge under Gravity Dam: Development of a 3-D FDM Model in Heterogeneous Media (중력댐 하부 침투류에 의한 양압력과 누수량 산정 -비균질 3차원 FDM 모형의 개발 및 적용-)

  • Kim, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1221-1234
    • /
    • 2013
  • The purpose of this study is to suggest the methodology for the computation of uplift pressure and discharge of the seepage flow under gravity dam. A 3-dimensional FDM model is developed for this purpose and this model can simulate the saturated Darcian flow in heterogeneous media. For the verification of the numeric model, test simulation has been executed and the mass balance has been checked. The error does not exceed 3%. Using the developed model, The uplift pressure and seepage flow discharge under gravity dam has been calculated. The uplift pressure shows the similar pattern, comparing with the result of flow-net method. As the length of grout curtain increases, the uplift pressure decreases linearly, but the seepage flow discharge shows the non-linear decreasing pattern. The coefficients of the formulas in the dam-design criteria have been analysed, and ${\alpha}=1/3$ corresponds to the value when the length of curtain grout is 70% of the aquifer height. The uplift pressure near the pressure relief drain has the big curvature vertically and horizontally. The developed model in this study can be used for the evaluation of the effects of seepage flow under gravity dam.