• Title/Summary/Keyword: 유한필드

Search Result 54, Processing Time 0.032 seconds

Implementing Dynamic Reconfiguration in Sensor Network Operating System SenOS (센서 네트워크용 운영체제 SenOS에서 동적 재구성 기능 구현)

  • Kim, Do-Hyuk;Kim, Min-Kyu;Kim, Tae-Hyung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10a
    • /
    • pp.390-394
    • /
    • 2006
  • 센서 노드는 정보 수집, 데이터 통신, 협력을 통한 모니터링과 같은 작업들을 수행하기 위해 군사 작전 지역, 산업 시설, 생태 환경 등에 배치된다. 응용 프로그램과 운영체제가 설치된 센서 노드를 센서 필드에 배치하고 나면 센서 노드는 쉽게 수거되기 어렵고 재프로그래밍을 위한 물리적인 연결이 힘들게 되어 응용의 변화에 따른 새로운 응용 프로그램의 설치, 수정과 같은 업데이트가 쉽지 않다. 또한 제한적인 시스템 자원을 가진 센서 노드의 특성상 이러한 재구성 기능은 업데이트에 사용되는 비용이 고려 되어야한다. 본 논문에서는 유한 상태 머신 (finite state machine) 기반의 운영체제인 SenOS에서 응용의 변화에 대처할 수 있도록 동적 재구성 기능이 구현된 형태와 특징을 기술한다.

  • PDF

New Division Circuit for GF(2m) Applications (유한체 GF(2m)의 응용을 위한 새로운 나눗셈 회로)

  • Kim Chang Hoon;Lee Nam Gon;Kwon Soonhak;Hong Chun Pyo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.3 s.93
    • /
    • pp.235-242
    • /
    • 2005
  • In this paper, we propose a new division circuit for $GF(2^m)$ applications. The proposed division circuit is based on a modified the binary GCD algorithm and produce division results at a rate of one per 2m-1 clock cycles. Analysis shows that the proposed circuit gives $47\%$ and $20\%$ improvements in terms of speed and hardware respectively. In addition, since the proposed circuit does not restrict the choice of irreducible polynomials and has regularity and modularity, it provides a high flexibility and scalability with respect to the field size m. Thus, the proposed divider. is well suited to low-area $GF(2^m)$ applications.

Improvement of Field Uniformity in a Reverberation Chamber with Various Numbers of a 2D CRD (2D CRD 수에 따른 전자파 잔향실 내의 필드 균일성 개선)

  • Kim, Jin-Bok;Rhee, Joong-Geun;Kim, Jung-Hoon;Rhee, Eu-Gene
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.4
    • /
    • pp.18-24
    • /
    • 2010
  • This paper presents the improvement of the field uniformity in a reverberation chamber which can be substitute an anechoic chamber for the electromagnetic interference (EMI) and immunity test. Nowadays, there are many EMI issues due to the increasing use of wireless local area network (LAN), digital multimedia broadcasting (DMB), and mobile internet. With this reason, this paper studied the field characteristics in a reverberation chamber for 2.3 GHz band. In this paper, the finite difference time domain (FDTD) method is used to analyze the field characteristics in a reverberation chamber. To improve the field uniformity in the reverberation chamber, this paper adopted a 2D cubical residue diffuser (CRD) with varying the disposition and number of CRD. For each case, the tolerance and standard deviation of the electric field strength are evaluated. In comparison with the reverberation chamber without any CRD, the reverberation chamber with two CRDs showed improved results; 1.98 dB improvement in standard deviation and 3.6 dB improvement in tolerance.

Probabilistic Stability Analysis of Slopes by the Limit Equilibrium Method Considering Spatial Variability of Soil Property (지반물성의 공간적 변동성을 고려한 한계평형법에 의한 확률론적 사면안정 해석)

  • Cho, Sung-Eun;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.13-25
    • /
    • 2009
  • In this paper, a numerical procedure of probabilistic slope stability analysis that considers the spatial variability of soil properties is presented. The procedure extends the deterministic analysis based on the limit equilibrium method of slices to a probabilistic approach that accounts for the uncertainties and spatial variation of the soil parameters. Making no a priori assumptions about the critical failure surface like the Random Finite Element Method (RFEM), the approach saves the amount of solution time required to perform the analysis. Two-dimensional random fields are generated based on a Karhunen-Lo$\grave{e}$ve expansion in a fashion consistent with a specified marginal distribution function and an autocorrelation function. A Monte Carlo simulation is then used to determine the statistical response based on the random fields. A series of analyses were performed to verify the application potential of the proposed method and to study the effects of uncertainty caused by the spatial heterogeneity on the stability of slope. The results show that the proposed method can efficiently consider the various failure mechanisms caused by the spatial variability of soil property in the probabilistic slope stability assessment.

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Development of a numerical method for rotor aerodynamics applications (로터 공력해석을 위한 수치기법 개발)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.693-698
    • /
    • 2007
  • A numerical method for accurate simulations of rotor aerodynamics is proposed. The numerical diffusion in the typically coarse grids away from the rotor blades is improved by implying a fourth-order of interpolation of local characteristic variables of the flow in the reconstruction stage of MUSCL approach in the framework of a finite volume formulation. In addition, different slope limiters are applied to the different characteristic fields, such as compressive limiters to linear characteristic fields to reduce the numerical dissipation whereas, diffusive limiters to nonlinear characteristic fields to increase numerical stability. Various exemplary problems related to the rotor aerodynamics applications are tested and the numerical results show a significant improvement in wake capturing capability. However, rotor aeroacoustic calculations show no meaningful difference over traditional MUSCL approach.

(Design of New Architecture for Simultaneously Computing Multiplication and Squaring over $GF(2^m)$ based on Cellular Automata) ($GF(2^m)$상에서 셀룰러 오토마타를 이용한 곱셈/제곱 동시 연산기 설계)

  • Gu, Gyo-Min;Ha, Gyeong-Ju;Kim, Hyeon-Seong;Yu, Gi-Yeong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.3
    • /
    • pp.211-219
    • /
    • 2002
  • In this paper, a new architecture that can simultaneously process modular multiplication and squaring on GF(2$^{m}$ ) in m clock cycles by using the cellular automata is presented. This can be used efficiently for the design of the modular exponentiation on the finite field which is the basic computation in most public key crypto systems such as Diffie-Hellman key exchange, EIGamal, etc. Also, the cellular automata architecture is simple, regular, modular, cascadable and therefore, can be utilized efficiently for the implementation of VLSI.

Systolic Architecture for Digit Level Modular Multiplication/Squaring over GF($2^m$) (GF($2^m$)상에서 디지트 단위 모듈러 곱셈/제곱을 위한 시스톨릭 구조)

  • Lee, Jin-Ho;Kim, Hyun-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2008
  • This paper presents a new digit level LSB-first multiplier for computing a modular multiplication and a modular squaring simultaneously over finite field GF($2^m$). To derive $L{\times}L$ digit level architecture when digit size is set to L, the previous algorithm is used and index transformation and merging the cell of the architecture are proposed. The proposed architecture can be utilized for the basic architecture for the crypto-processor and it is well suited to VLSI implementation because of its simplicity, regularity, and concurrency.

Compact Field Remapping for Dynamically Allocated Structures (동적으로 할당된 구조체를 위한 압축된 필드 재배치)

  • Kim, Jeong-Eun;Han, Hwan-Soo
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.10
    • /
    • pp.1003-1012
    • /
    • 2005
  • The most significant difference of embedded systems from general purpose systems is that embedded systems are allowed to use only limited resources including battery and memory. Especially, the number of applications increases which deal with multimedia data. In those systems with high data computations, the delay of memory access is one of the major bottlenecks hurting the system performance. As a result, many researchers have investigated various techniques to reduce the memory access cost. Most programs generally have locality in memory references. Temporal locality of references means that a resource accessed at one point will be used again in the near future. Spatial locality of references is that likelihood of using a resource gets higher if resources near it were just accessed. The latest embedded processors usually adapt cache memory to exploit these two types of localities. Processors access faster cache memory than off-chip memory, reducing the latency. In this paper we will propose the enhanced dynamic allocation technique for structure-type data in order to eliminate unused memory space and to reduce both the cache miss rate and the application execution time. The proposed approach aggregates fields from multiple records dynamically allocated and consecutively remaps them on the memory space. Experiments on Olden benchmarks show $13.9\%$ L1 cache miss rate drop and $15.9\%$ L2 cache miss drop on average, compared to the previously proposed techniques. We also find execution time reduced by $10.9\%$ on average, compared to the previous work.

Location Based Load Balancing Method for Cluster Routing in Wireless Sensor Networks (무선 센서 네트워크의 클러스터 라우팅에서 위치기반 부하 균등화 기법)

  • Yoo, Woo Sung;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.942-949
    • /
    • 2016
  • Efficient routing protocols designed for Wireless Sensor Networks (WSN) can be extended and applied to Internet of Things (IoT) data routing, as IoT can be considered to be an extension from WSN. When the size of the data in IoT is often bigger than in conventional WSNs, existing cluster routing protocol such as LEACH may cause high data loss rate due to its incomplete load balancing. We present an enhanced LEACH-based protocol which can minimize the data loss which is an important performance measure in IoT. In our proposed protocol, the base station estimates the location of nodes by the trilateration technique to make sure optimal number of cluster heads and members in a deterministic manner. We evaluate our proposed protocol via computer simulations in terms of data loss rate and average network lifetime.