• 제목/요약/키워드: 유한체 곱셈기

검색결과 84건 처리시간 0.023초

GF($3^m$)의 Digit-Serial 유한체 곱셈기 (Digit-Serial Finite Field Multipliers for GF($3^m$))

  • 장남수;김태현;김창한;한동국;김호원
    • 대한전자공학회논문지SD
    • /
    • 제45권10호
    • /
    • pp.23-30
    • /
    • 2008
  • 최근 페어링 기반의 암호시스템에 대한 연구가 활발히 진행되고 있으며, 암호시스템의 효율성은 기존의 공개키 암호시스템과 같이 유한체에 의존한다. 페어링 기반의 암호시스템의 경우 주로 GF($3^m$)에서 고려되며 유한체 연산에서 곱셈 연산이 효율성에 가장 큰 영향을 미친다. 본 논문에서는 삼항 기약다항식 기반의 새로운 GF($3^m$) MSD-first Digit-Serial 곱셈기를 제안한다. 제안하는 MSD-first Digit-Serial 곱셈기는 모듈러 감산 연산부를 병렬화하여 공간복잡도는 기존의 결과와 거의 같으나 Critical Path Delay가 기존의 1MUL+(log ${\lceil}n{\rceil}$+1)ADD에서 1MUL+(log ${\lceil}n+1{\rceil}$)ADD으로 감소한다. 따라서 Digit이 $2^k$가 아닌 경우 1번의 덧셈에 대한 시간 지연이 감소한다.

삼항 기약다항식을 위한 효율적인 Shifted Polynomial Basis 비트-병렬 곱셈기 (Efficient Bit-Parallel Shifted Polynomial Basis Multipliers for All Irreducible Trinomial)

  • 장남수;김창한;홍석희;박영호
    • 정보보호학회논문지
    • /
    • 제19권2호
    • /
    • pp.49-61
    • /
    • 2009
  • 유한체 연산중에서 곱셈 연산은 중요한 연산중 하나이다. 또한, 최근에 Fan과 Dai는 이진체 곱셈기의 효율성을 개선하기 위하여 Shifted Polynomial Basis(SPB)와 이를 이용한 non-pipeline 비트-병렬 곱셈기를 제안하였다. 본 논문에서는 삼항 기약다항식 $x^{n}+x^{k}+1$에 의하여 정의된 $F_{2^n}$ 위에서의 새로운 SPB 곱셈기 type I과 type II를 제안한다. 제안하는 type I 곱셈기는 기존의 SPB 곱셈기에 비하여 시간 및 공간 복잡도면에서 모두 효율적이다. 그리고 type II 곱셈기는 제안하는 type I 곱셈기를 포함하여 기존의 모든 결과보다 작은 공간 복잡도를 가진다. 그러나 type II 곱셈기의 시간 복잡도는 n과 k에 따라 최대 1 XOR time-delay 증가한다.

기약 All One Polynomial을 이용한 유한체 GF(2$^{m}$ )상의 시스톨릭 곱셈기 설계 (Design of Systolic Multipliers in GF(2$^{m}$ ) Using an Irreducible All One Polynomial)

  • 권순학;김창훈;홍춘표
    • 한국통신학회논문지
    • /
    • 제29권8C호
    • /
    • pp.1047-1054
    • /
    • 2004
  • 본 논문에서는 AOP(All One Polynomial)에 의해 결정되는 유한체 GF(2$^{m}$ )상의 곱셈을 위한 두 가지 종류의 시스톨릭 어레이를 제안한다. 제안된 두 시스톨릭 어레이 모두 패러럴 입출력 구조를 가진다. 첫 번째 제안된 곱셈기는 O($m^2$)의 면적 복잡도와 O(1)의 시간 복잡도를 가진다. 다시 말하면, 이 곱셈기는 m(m+1)/2 개의 동일한 셀들로 이루어지며 초기 m/2+1 사이클 지연 후, 1 사이클마다 곱셈의 결과를 출력한다. 첫 번째 제안된 곱셈기를 기존의 AOP를 사용하는 병렬형 시스톨릭 곱셈기와 비교 분석한 결과 하드웨어 및 계산지연 시간에 있어 각각 12% 및 50%의 성능 개선을 보인다. 두 번째 제안된 시스톨릭 곱셈기는 암호응용을 위해 선형 어레이로 설계되었으며, O(m)의 면적 복잡도와 O(m)의 시간 복잡도를 가진다. 즉, m+1 개의 동일한 셀들로 이루어지며 m/2+1 사이클마다 곱셈의 결과를 출력한다. 두 번째 곱셈기를 기존의 선형 시스톨릭 곱셈기들과 비교 분석한 결과, 하드웨어, 계산지연 시간, 그리고 처리율에 있어 각각 43%, 83%, 그리고 50%의 성능 개선을 보인다. 또한 제안된 곱셈기들은 높은 규칙성과 모듈성을 가지기 때문에 VLSI 구현에 매우 적합하다. 따라서 GF(2$^{m}$ ) 응용을 위해, 본 연구에서 제안된 곱셈기들을 사용하면 최소의 하드웨어 사용으로 최대의 성능을 얻을 수 있다.

$GF(2^m)$ 상의 저복잡도 고속-직렬 곱셈기 구조 (Low Complexity Architecture for Fast-Serial Multiplier in $GF(2^m)$)

  • 조용석
    • 정보보호학회논문지
    • /
    • 제17권4호
    • /
    • pp.97-102
    • /
    • 2007
  • 본 논문에서는 $GF(2^m)$ 상의 새로운 저복잡도 고속-직렬 곱셈기 구조를 제안하였다. 고속-직렬 곱셈기는 유한체 $GF(2^m)$의 표준기저 상에서 동작하며, 직렬 곱셈기 보다는 짧은 지연시간에 결과를 얻을 수 있고, 병렬 곱셈기 보다는 적은 하드웨어로 구현할 수 있다. 이 고속-직렬 곱셈기는 회로의 복잡도와 지연시간 사이에 적절한 절충을 꾀할 수 있는 장점을 가지고 있다. 그러나 기존의 고속-직렬 곱셈기는 t배의 속도를 향상시키기 위하여 (t-1)m개의 레지스터가 더 사용되었다. 본 논문에서는 레지스터 수를 증가시키지 않는 새로운 고속-직렬 곱셈기를 설계하였다.

유한체에서의 원시 정규기저 알고리즘의 구현과 응용에 관한 연구 (AN ALGORITHM FOR PRIMITIVE NORMAL BASIS IN FINITE FIELDS)

  • 임종인;김용태;김윤경;서광석
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 1992년도 정기총회및학술발표회
    • /
    • pp.127-130
    • /
    • 1992
  • GF(2m) 이론은 switching 이론과 컴퓨터 연산, 오류 정정 부호(error correcting codes), 암호학(cryptography) 등에 대한 폭넓은 응용 때문에 주목을 받아 왔다. 특히 유한체에서의 이산 대수(discrete logarithm)는 one-way 함수의 대표적인 예로서 Massey-Omura Scheme을 비롯한 여러 암호에서 사용하고 있다. 이러한 암호 system에서는 암호화 시간을 동일하게 두면 고속 연산은 유한체의 크기를 크게 할 수 있어 비도(crypto-degree)를 향상시킨다. 따라서 고속 연산의 필요성이 요구된다. 1981년 Massey와 Omura가 정규기저(normal basis)를 이용한 고속 연산 방법을 제시한 이래 Wang, Troung 둥 여러 사람이 이 방법의 구현(implementation) 및 곱셈기(Multiplier)의 설계에 힘써왔다. 1988년 Itoh와 Tsujii는 국제 정보 학회에서 유한체의 역원을 구하는 획기적인 방법을 제시했다. 1987년에 H, W. Lenstra와 Schoof는 유한체의 임의의 확대체는 원시정규기저(primitive normal basis)를 갖는다는 것을 증명하였다. 1991년 Stepanov와 Shparlinskiy는 유한체에서의 원시원소(primitive element), 정규기저를 찾는 고속 연산 알고리즘을 개발하였다. 이 논문에서는 원시 정규기저를 찾는 Algorithm을 구현(Implementation)하고 이것이 응용되는 문제들에 관해서 연구했다.

  • PDF

다항식기저를 이용한 GF$(2^m)$ 상의 디지트병렬/비트직렬 곱셈기 (Digit-Parallel/Bit-Serial Multiplier for GF$(2^m)$ Using Polynomial Basis)

  • 조용석
    • 한국통신학회논문지
    • /
    • 제33권11C호
    • /
    • pp.892-897
    • /
    • 2008
  • 본 논문에서는 GF$(2^m)$ 상에서 기존의 비트직렬 곱셈기에 비해 짧은 지연 시간을 갖는 새로운 디지트병렬/비트직렬 곱셈기를 제안한다. 제안된 곱셈기는 유한체 GF$(2^m)$의 다항식기저 상에서 동작하며, D 클럭 사이클마다 곱셈의 결과를 출력한다. 여기에서 D는 디지트의 크기이다. 제안된 곱셈기는 기존의 비트직렬 곱셈기 보다는 짧은 지연시간에 곱셈의 결과를 얻을 수 있고, 비트병렬 곱셈기보다는 적은 하드웨어로 구현할 수 있다. 따라서 회로의 복잡도와 지연시간 사이에 적절한 절충을 꾀할 수 있는 장점을 가지고 있다.

이진 에드워즈 곡선 암호를 위한 점 스칼라 곱셈기 설계 (A Design of Point Scalar Multiplier for Binary Edwards Curves Cryptography)

  • 김민주;정영수;신경욱
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1172-1179
    • /
    • 2022
  • 이진 에드워즈 곡선 (Binary Edwards Curves; BEdC) 기반의 공개키 암호 시스템을 위한 점 스칼라 곱셈기 설계에 대해 기술한다. BEdC 상의 점 덧셈 (Point Addition; PA)과 점 두배 (Point Doubling; PD) 연산의 효율적인 구현을 위해 유한체 연산에 투영 좌표계를 적용하였으며, 이에 의해 점 스칼라 곱셈 (Point Scalar Multiplication; PSM)에 단지 1회의 유한체 역원 연산만 포함되어 연산성능이 향상되었다. 하드웨어 설계에 최적화를 적용하여 PA와 PD의 유한체 연산을 위한 저장 공간과 연산 단계를 약 40% 감소시켰다. BEdC를 위한 점 스칼라 곱셈기를 두 가지 유형으로 설계했으며, Type-I은 257-b×257-b 이진 곱셈기 1개를 사용하고, Type-II는 32-b×32-b 이진 곱셈기 8개를 사용한다. Type-II 설계는 Type-I 구조에 비해 LUT를 65% 적게 사용하나, 240 MHz로 동작할 때 약 3.5배의 PSM 연산시간이 소요되는 것으로 평가되었다. 따라서 Type-I의 BEdC 크립토 코어는 고성능이 필요한 경우에 적합하고, Type-II 구조는 저면적이 필요한 분야에 적합하다.

ECC 연산을 위한 가변 연산 구조를 갖는 정규기저 곱셈기와 역원기 (Scalable multiplier and inversion unit on normal basis for ECC operation)

  • 이찬호;이종호
    • 대한전자공학회논문지SD
    • /
    • 제40권12호
    • /
    • pp.80-86
    • /
    • 2003
  • 타원곡선 암호(Elliptic Curve Crypto-graphy : ECC)는 기존의 어떤 공개키 암호 시스템보다 우수한 비트 당 안전도를 제공하고 있어 최근 큰 관심을 끌고 있다. 타원곡선 암호 시스템은 보다 작은 키 길이를 갖고 있어 시스템의 구현에 있어서 작은 메모리 공간과 적은 처리 전력을 필요로 하므로 다른 암호화 방식에 비해 임베디드 어플리케이션에 적용하는데 유리하다 본 논문에서는 제곱 연산이 용이한 정규기저로 표현된 유한체에서의 곱셈기를 구현하였다. 이 곱셈기는 타원곡선 암호에서 사용되는 GF(2/sup 193/) 상에서 구현하였고, Massey와 Omura가 제시한 병렬 입력-직렬 출력 곱셈기의 구조를 변형하여 출력의 크기와 설계면적을 조절할 수 있다. 또한 제안한 곱셈기를 적용하여 정규기저 역원기를 구현하였다. 곱셈기와 역원기는 HDL을 이용하여 설계하구 0.35㎛ CMOS 셀 라이브러리를 이용하여 구현하였으며 시뮬레이션을 통해 동작과 성능을 검증하였다.

셀룰라 오토마타를 이용한 $GF({2^m})$상의 곱셈기$^1$ (Modular Multiplier based on Cellular Automata over $GF({2^m})$)

  • 이형목;김현성;전준철;하경주;구교민;김남연;유기영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (1)
    • /
    • pp.709-711
    • /
    • 2001
  • 본 논문에서는 유한 확대 체 GF($^{m}$ )상에서 셀룰라 오토마타를 이용한 곱셈기 구조를 제안한다. 제안된 구조는 기약 다항식으로 AOP(All One Polynomial)의 특성을 사용하고 LSB방식으로 곱셈 연산을 수행한다. 제안된 곱셈기는 지연시간으로 m+1을 갖는 임계경로로는 1- $D_{AND}$+1- $D_{XOR}$를 갖는다. 특히 구조가 정규성, 모듈성, 병렬성을 가지기 때문에 VLSI구현에 효율적이다.적이다.

  • PDF

크기 가변 유한체 연산기를 이용한 타원곡선 암호 프로세서 (Elliptic Curve Cryptography Coprocessors Using Variable Length Finite Field Arithmetic Unit)

  • 이동호
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.57-67
    • /
    • 2005
  • 고속 스칼라곱 연산은 타원곡선 암호 응용을 위해서 매우 중요하다. 보안 상황에 따라 유한체의 크기를 변경하려면 타원곡선 암호 보조프로세서가 크기 가변 유한체 연산 장치를 제공하여야 한다. 크기 가변 유한체 연산기의 효율적인 연산 구조를 연구하기 위하여 전형적인 두 종류의 스칼라곱 연산 알고리즘을 FPGA로 구현하였다. Affine 좌표계 알고리즘은 나눗셈 연산기를 필요로 하며, projective 좌표계 알고리즘은 곱셈 연산기만 사용하나 중간 결과 저장을 위한 메모리가 더 많이 소요된다. 크기 가변 나눗셈 연산기는 각 비트마다 궤환 신호선을 추가하여야 하는 문제점이 있다. 본 논문에서는 이로 인한 클록 속도저하를 방지하는 간단한 방법을 제안하였다. Projective 좌표계 구현에서는 곱셈 연산으로 널리 사용되는 디지트 serial 곱셈구조를 사용하였다. 디지트 serial 곱셈기의 크기 가변 구현은 나눗셈의 경우보다 간단하다. 최대 256 비트 크기의 연산이 가능한 크기 가변 유한체 연산기를 이용한 암호 프로세서로 실험한 결과, affine 좌표계 알고리즘으로 스칼라곱 연산을 수행한 시간이 6.0 msec, projective 좌표계 알고리즘의 경우는 1.15 msec로 나타났다. 제안한 타원곡선 암호 프로세서를 구현함으로써, 하드웨어 구현의 경우에도 나눗셈 연산을 사용하지 않는 projective 좌표계 알고리즘이 속도 면에서 우수함을 보였다. 또한, 메모리의 논리회로에 대한 상대적인 면적 효율성이 두 알고리즘의 하드웨어 구현 면적 요구에 큰 영향을 미친다.