• Title/Summary/Keyword: 유한차분 해석

Search Result 812, Processing Time 0.031 seconds

Consolidation Analysis for the Interface of Multi-layered and Smeared Soil by Finite Difference Method (다층지반 및 스미어 경계면 해석을 위한 유한차분 압밀해석 기법)

  • Yune, Chan-Young;Cho, Kyoung-Jin;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5C
    • /
    • pp.283-292
    • /
    • 2008
  • In this research, finite difference (FD) scheme for the interface of the layer between different soil characteristics was suggested. Based on the suggested scheme, FD analysis program for the consolidation analysis of the multi-layered and smeared soil was developed. And the applicability of the program was investigated by the FD analysis conducted for the various soil conditions. Analysis results showed that the permeability near the drainage boundary had a dominant effect on the consolidation rate. And the consolidation rate of the soil with the constant permeability in smeared area was retarded more than the soil with the linear variation of permeability in smeared area. Simple assumption of the constant variation of permeability in smeared area could be used when the decreasing rate of permeability in smeared area was relatively low. But exact assumption of the permeability variation in smeared area should be considered when the decreasing rate of permeability in smeared area was relatively high. Finally, based on the analysis result on Busan area, the analysis considering multi-layered soil should be needed to exactly evaluate time for the completion of consolidation.

Development of Mesh Generator for 2D Hydraulic Analysis(Ⅴ) (2차원 수리해석을 위한 범용 Mesh Generator의 개발(Ⅴ))

  • Kim, Eu-Gene;Lee, Seung-Hyun;Oh, Chung-Whan;Kim, Hong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.815-821
    • /
    • 2009
  • 하천의 2차원 흐름 및 하상변동, 오염확산 해석을 위한 유체의 수치해석법에는 유한요소법, 유한차분법, 유한차분법의 변형인 유한체적법, 경계적분법 등이 있으며, 국내의 경우 비구조적 요소망(unstructured mesh)을 이용하여 복잡한 형상을 표현하기가 상대적으로 용이한 유한요소법이 널리 사용되고 있다. 하천을 유한 요소화 하는 전처리 과정은 전체 해석 과정을 자동화 하는데 있어 필수적인 요소이며, 주로 삼각 요소망 또는 사각 요소망을 이용하여 해석을 수행하게 된다. 삼각 요소망의 경우 상대적으로 자동화하기 쉬운 반면 사각 요소망의 생성은 절점 생성 자체가 삼각 요소망 보다 더 많은 기하학적 제한 요소를 가지고 있기 때문에 상대적으로 완성도 높은 알고리즘을 구현하기가 어렵다 할 수 있다. 이에 따라 본 연구에서는 2차원 상에서 사각 요소망(quadrilateral elements)을 생성할 수 있는 Paving method를 중심으로 한 요소망 생성 알고리즘에 대해 고찰하고, 국내 최초의 범용 수치해석 모형인 RAMS(River Analysis and Modeling System)에 적용하였다. Paving method는 1990년에 Blacker and Stephenson에 의해 제안되었으며, Sandia National Laboratories에 의해 완성되었다. Paving Method는 advancing front style의 요소망을 생성하게 되고, 바깥쪽에서 안쪽으로 element layer를 생성하면서 채워나간다. 본 연구에서는 기존의 요소망 생성 프로세스에서 element 삽입 전의 검증 기능을 강화한 새로운 버전의 paving method를 적용하엿다.

  • PDF

Numerical Analysis of Two-dimenstional Flow in Curvilinear Coordinate System (곡선좌표계에서의 2차원 흐름의 수치해석)

  • Kim, Hyung-Jun;Cho, Yong-Sik;Kim, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.402-407
    • /
    • 2006
  • 본 연구는 곡선좌표계에서 유한차분기법(finite difference method)을 이용하여 2차원 흐름이 모의가능한 수치모형을 개발하는 것이다. 기존의 연구는 대부분 직교좌표계(cartesian coordinate system)에서의 격자망을 대상으로 개발되고 적용되었기 때문에 불규칙한 흐름의 경계 및 형상을 올바로 표현하기 어려웠다. 유한요소법이나 유한체적법같은 수치모의기법들이 개발되어 비구조격자체계를 구성하고 자연현상에 가까운 경계 표현할 수 있도록 개발되었다. 하지만 위의 기법들은 질량과 운동량과 같은 물리량을 보존하기 위해서 매우 조밀한 격자체계를 가져야만 한다. 이에 본 연구에서는 기존의 문제점들을 해결하기 위하여 곡선좌표계(curvilinear coordinate system)를 이용하여 지배방정식을 표현하고 2차원 흐름을 모의할 수 있는 모형을 구축한다. 수치모형은 leap-frog기법과 1차 정확도의 풍상차분기법(upwind scheme)을 사용하여 구성하였다. 본 연구에서 개발된 모형을 사각수조 및 만곡수로흐름에 적용하여 모의결과를 해석해 및 실험관측값과 비교하였다. 이로부터 본 수치모형이 해석해 및 실측치와 잘 일치하고 있음을 알 수 있었다.

  • PDF

A comparative study on the numerical analysis program by SSI analysis of a high-rise building and an adjacent underground structure (초고층 건물과 인접지하구조물의 SSI 해석을 통한 수치해석 프로그램 비교 연구)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.2
    • /
    • pp.211-225
    • /
    • 2019
  • Recently, earthquakes have occurred throughout the entire region of Korea and seismic analysis studies have been actively conducted in various fields. SSI analyses studies considering ground have been carried out consistently. However, few comparative analyses have been performed on the dynamic behavior of buildings according to numerical analysis method in the case of the previous dynamic analyses considering grounds. Therefore, in this study, the dynamic analyses were performed on a high-rise building by using both a finite element program MIDAS GTS NX and a finite difference program FLAC 2D. The results were compared and analyzed each other. As a result, both the maximum compressive and tensile bending stresses of above ground and below ground part were estimated to be a little larger by MIDAS GTS NX than by FLAC 2D. However, the maximum horizontal displacement value, the horizontal displacement distribution, and the position of weak part were turned out to be similar in both analysis programs. Therefore, it can be concluded that there is no difference in using either a finite element program or a finite difference program for the convenience of a user for a dynamic analysis.

Numerical Analyses of Critical Buckling Loads and Modes of Anisotropic Laminated Composite Plates (비등방성 복합 적층판의 임계좌굴하중 및 모드의 수치 해석)

  • Lee, Sang Youl;Yhim, Sung Soon;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.451-461
    • /
    • 1998
  • The solution of anisotropic plate via the classical methods is limited to relatively load and boundary conditions. If these conditions are more complex, the analysis becomes increasingly tedious and even impossible. For many plate problems of considerable practical interest, analytic solutions to the governing differential equations cannot be found. Among the numerical techniques presently available, the finite difference method and the finite element method are powerful numerical methods. The objective of this paper is to compare with each numerical methods for the buckling load and modes of anisotropic composite laminated plates considering shear deformation. In applying numerical methods to solve differential equations of anisotropic plates, this study uses the finite difference method and the finite element method. In determining the eigenvalue by Finite Difference Method, this paper represent good convergence compared with Finite Element Method. Several numerical examples and buckling modes show the effectiveness of various numerical methods and they will give a guides in deciding minimum buckling load and various mode shapes.

  • PDF

Finite Difference Analysis of Laminated Composite Shell Structures with Various Geometrical Shapes (다양한 기하학적 형상을 갖는 복합 적층쉘 구조의 유한차분해석)

  • Park, Hae-Gil;Lee, Sang-Youl;Chang, Suk-Yoon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.24-34
    • /
    • 2010
  • This paper analyzed the partial differential equations of laminated composite shells of revolution by using the finite difference method. The proof that numerical results are reasonable and accurate is obtained through converge ratio analysis and commercial program LUSAS for the structural analysis. The purpose of this study is to examine closely the engineering advantages and to analyze the structural behaviors of the anisotropic shells of revolution. Thus, the relevant reinforcement and most suitable arrangement of fiber to produce the highest strength are proposed through the numerical results according to a variety of parameter study. Namely, the distribution of displacements and stress resultants are analyzed according to the change of meridian's curvature, the ratio of height-width of shell, subtended angle, fiber angle, and so on. Using these distribution, the most suitable shell may be proposed to produce the highest strength. Also, the configuration of the entire laminated composite conical shells is analysed, and a variety of the design criterion of circular conical shell are proposed and studied in engineering view points.

  • PDF

Analysis of Rock Slope Stability Based on Fuzzy Approximate Reasoning (퍼지근사추론법에 의한 암반사면의 안정해석)

  • 기완서;김삼석;주승완
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.153-161
    • /
    • 2001
  • The quantitative evaluation of the stereo graphic projection, the limit equilibrium analysis, the finite difference analysis, the distinct element methocI is a analytical evaluation using many variables. Through the reliability analysis by the point estimation technique, uncertainty of other variables that have an effect on the stability of the rock slo~ was considered. The organized evaluation method of the approximate reasoning concept and using a fuzzy language was developed to confer and analysis the failure factors in planning and constructing the rock slope. Considering the result of the an- alysis, it was demonstrated that stability of entire sections can be evaluated through reliability analysis of point estimation technique. The results of stability evaluation by Fuzzy Approximate Reasoning is generally identical with the results of other existirw; analyses. As mentioned above, general and organized evaluation of special qualities of rock slope is possible using RMR Classification, Stereo Graphic Projection, Limit Equilibriwn Analysis, Finite Difference Analysis, Distinct Element Method, Point Estimation Technique, and Fuzzy Approximate Reasoning.

  • PDF

전산유체역학과 유한요소법

  • 손정락
    • Journal of the KSME
    • /
    • v.29 no.4
    • /
    • pp.403-413
    • /
    • 1989
  • 유한요소법의 전산유체 역학분야에 대한 응용현황을 계산방법과 적용례를 중심으로 정리하였다. 유한요소법의 가장 큰 장점은 복잡한 유동영역을 해석하기 위한 불규칙 요소망(unstructured mesh)의 사용이라 볼 수 있으며 적응적 요소망을 이용하여 계산의 정확도를 높일 수 있는 것 또한 강점이라 할 수 있다. 다만 불규칙 요소망 사용으로 인해 수반되는 대수 방정식 계산시간 및 기억용량의 증가는 conjugate gradient 방법 등을 이용하여 반드시 해결되어야만 한다. 지금 까지 유한요소법을 이용한 계산방법을 개발해 오는 과정을 보면 유한차분법에서 오래 전에 개 발된 방법들을 도입한 경우가 많았으며 특히 난류 및 개발된 경우가 많으며 대부분의 경우 이 들을 그대로 도입, 이용하였다. 반대로 최근에 항공기 동체설계 분야를 중심으로 복잡한 형태의 유동영역을 해석이 요구되는 경우 유한차분법, 특히 유한체적법(finite volume method)에 삼각형 유한요소를 이용한 불규칙 요소망을 도입하여 성공적으로 이용하고 있다. 따라서 전산유체 역 학의 발전을 위하여 두 분야의 유기적인 협조가 필요하며 결과적으로 전산유체 역학기법이 완 전히 기계설계의 한 분야로 정립될 수 있도록 많은 노력이 필요하다고 본다.

  • PDF

Numerical Analysis in Electromagnetic Problem Using Wavelet-Galerkin Method (Wavelet-Galerkin 방법을 이용한 전자기장 문제의 수치 해석)

  • Cho, Jung-Kyun;Lim, Sung-Ki;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.174-176
    • /
    • 1997
  • 편미분 방정식의 형태로 나타나는 많은 전자기장 문제들을 유한요소법이나 유한차분법 등의 수치해석적 방법으로 해결하려는 경우 시스템 행렬을 구성하게 된다. 이때 해석영역의 요소수가 많을수록 행렬의 조건수(condition number)는 다항식(polynomial) 증가를 갖게 되며, 이는 풀어야 할 선형시스템에서 반복 연산 과정의 속도를 떨어뜨리는 결과를 야기한다. 이러한 결과를 wavelet을 기저 함수로 쓰게 되면, 더 높은 분해능(resolution)의 해를 유한 요소법이나 유한 차분법에서와 같은 요소 분할 과정이 없이 Mallat 변환이라는 간단한 과정을 통해 구할 수 있으며, 본 논문에서는 Daubechies의 wavelet 함수를 기저 함수로 사용하여 전자기장 문제에 적용함으로서 수치해석에 있어서 wavelet 함수의 적용이 많은 장점을 갖고 있음을 보인다.

  • PDF

Intrinsic Enrichment of Moving Least Squares Finite Difference Method for Solving Elastic Crack Problems (탄성균열 해석을 위한 이동최소제곱 유한차분법의 내적확장)

  • Yoon, Young-Cheol;Lee, Sang-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.457-465
    • /
    • 2009
  • This study presents a moving least squares (MLS) finite difference method for solving elastic crack problems with stress singularity at the crack tip. Near-tip functions are intrinsically employed in the MLS approximation to model near-tip field inducing singularity in stress field. employment of the functions does not lose the merit of the MLS Taylor polynomial approximation which approximates the derivatives of a function without actual differentiating process. In the formulation of crack problem, computational efficiency is considerably improved by taking the strong formulation instead of weak formulation involving time consuming numerical quadrature Difference equations are constructed on the nodes distributed in computational domain. Numerical experiments for crack problems show that the intrinsically enriched MLS finite difference method can sharply capture the singular behavior of near-tip stress and accurately evaluate stress intensity factors.