• Title/Summary/Keyword: 유한요소 회전체 모델

Search Result 15, Processing Time 0.027 seconds

Validation of Flexible Rotor Model for a Large Capacity Flywheel Energy Storage System (유한요소법을 이용한 대용량 플라이휠 에너지 저장 장치의 연성 회전체 모델의 검증)

  • Yoo, Seong-Yeol;Park, Cheol-Hoon;Choi, Sang-Kyu;Lee, Jeong-Pil;Noh, Myoung-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1096-1101
    • /
    • 2008
  • When we design a controller for the active magnetic bearings that support a large rotor, it is important to have an accurate model of the rotor. For the case of the flywheel that is used to store energy, an accurate rotor model is especially important because the dynamics change with respect to the running speed due to gyroscopic effects. In this paper, we present a procedure of obtaining an accurate rotor model of a large flywheel energy storage system using finite-element method. The model can predict the first and the second bending mode which match well with the experimental results obtained from a prototype flywheel energy storage system.

Natural vibrations of laminated anisotropic shells of revolution (적층 이방성 회전체 쉘의 고유진동 해석)

  • 전종균
    • Computational Structural Engineering
    • /
    • v.8 no.3
    • /
    • pp.135-141
    • /
    • 1995
  • Any arbitrarily shaped laminated composite shells of revolution can be sum of the conical shell elements. Therefore, finite element model of conical shell element will be developed in this study. To verify consistency and validity of this model, natural vibrations of this model is compared with the analytical solution of cylindrical shell. Herein, an extensive parametric study is presented to assess the modeling capability of this model in class of laminated composite cylinders. It is seen that the proposed model provides highly accurate results with analytical solution. Once development of this conical shell element is done, any arbitrarily shaped composite shells of revolution can be easily analyzed.

  • PDF

Modeling of misaligned rotor-ball bearing systems (축 어긋남을 갖는 회전체-볼 베어링계의 모형화)

  • 이영섭;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.60-66
    • /
    • 1996
  • 축어긋남이 존재하는 회전체-볼베어링계의 진동을 묘사할 수 있는 모델을 개발하였다. 축어긋남은 운동 방정식에서 축과 베어링에서의 변위벡터 변화로 묘사되고, 이로 인해 커플링과 베어링에 작용하는 힘과 모멘트는 축어긋남의 효과로서 고려되었다. 축의 유연성을 고려하기 위해 축방향의 동력학을 포함한 축과 원판에 대한 유한 요소 모델을 이용하였으며, 원판과 베어링에서의 불균형 응답으로부터 축어긋남과 관련된 진동특성을 조사하였다.

  • PDF

Rotordynamic Analyses of a Composite Roller for Large LCD Panel Manufacturing (대형 LCD 패널 제조용 복합재 롤러의 회전체 동역학 해석)

  • Park, Hyo-Keun;Choi, Jin-Ho;Kweon, Jin-Hwe;Lee, Young-Hwan;Yang, Seung-Un;Kim, Dong-Hyun
    • Composites Research
    • /
    • v.19 no.6
    • /
    • pp.8-15
    • /
    • 2006
  • In this study, computational rotor dynamic analyses of a composite roller used for large LCD panel manufacturing process have been conducted. The present computational method is based on the general finite element method with rotating gyroscopic effects of rotor systems. General purpose commercial finite element code, SAMCEF which has special rotordynamics analysis module is applied. For the purpose of numerical verification, comparison study for a benchmark dual rotor model with support bearings is also presented. Detailed finite element models for composite roller with optimized lamination angles are constructed and analyzed considering gravity effect in order to investigate vibration characteristics in actual operation environment. As results of the present study, rotor stability diagrams and mass unbalance responses are presented for different rotating conditions.

Vibration Analysis of a Gear Train - Spindle System for an NC Lathe Gear Box (NC선반 기어박스의 기어열 - 축계 진동해석)

  • 최영휴;박선균;배병태;정택수;김청수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.216-221
    • /
    • 2000
  • In this study, two mathematical models are first constructed to analyze vibration characteristics of a gear train - spindle system of an NC lathe gear box. One is a lumped parameter model which is used for calculating natural frequencies of the torsional vibration, the other is a finite element model for analyzing lateral vibration and critical speeds of the spindle system. In addition, this study examines some possible resonance conditions such as gear mesh frequencies, 1X shaft rpm frequencies over whole operating speed range, and so on. The results may be helpful to design a machine tool gear box with low noise and vibration.

  • PDF

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Design of Low Vibration Rotor Considering Bearing Support Stiffness (전동기 베어링 지지강성을 고려한 회전자 저진동 설계)

  • Woo, Sang-Pyo;Lim, Do-Hyeong;Kim, Won-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.311-313
    • /
    • 2014
  • 전동기는 산업 전 분야에 걸쳐 다양하게 사용되는 회전기기로서, 소형화, 경량화, 고속화하는 추세에 있다. 이는 전동기 프레임의 구조강성을 약화시키고, 축계 위험속도를 낮춤으로써 진동에 취약한 구조를 가지게 된다. 회전체 진동 관련 규정 중 API 684 에서는 베어링 지지강성이 베어링 강성에 비해 3.5 배 이하인 경우 베어링 지지강성이 위험 속도 해석 모델에 포함되어야 함을 명시하고 있다. 산업 현장에서는 베어링 지지강성을 정확하게 산출하기 어려워 이를 고려하지 않고 회전체를 설계하는 경우가 많아 실제 조건에서 예측하지 못한 진동 문제가 발생할 가능성이 있다. 본 논문에서는 전동기 베어링 하우징 및 프레임에 대한 가진 시험을 통해 얻은 주파수 응답함수의 실수부를 분석하여 베어링 지지강성을 추출하는 방법을 제시하였다. 이를 바탕으로 유한요소 해석모델을 이용하여 베어링 지지강성을 해석적으로 예측하는 기법을 정립하였다. 추출된 베어링 지지강성을 축계 해석 모델에 포함하여 베어링 지지강성 포함 유무에 따른 축계 위험속도 및 안정성을 비교하였다. 그 결과 베어링 지지강성을 포함한 경우, 보다 정확한 위험속도 및 진동응답 수준을 예측할 수 있음을 확인하였다.

  • PDF

Dynamic analysis of spin speed dependent parameter rotor-bearing systems (회전속도 의존 매개변수를 가진 회전체-베어링계의 동적 해석)

  • 홍성욱;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.976-983
    • /
    • 1988
  • An efficient unbalance response analysis method for rotor-bearing systems with spin speed dependent parameters is developed by utilizing a generalized modal analysis scheme. The spin speed dependent eigenvalue problem of the original system is transformed into the spin speed independent eigenvalue problem by introducing a lambda matrix, assuming the bearing dynamic coefficients are well approximated by polynomial functions of spin speed. This method features that it requires far less computational effort in unbalance response calculations and that the influence coefficients are readily available. In addition, the critical speeds and the corresponding logarithmic decrements can be readily identified from the resulting eigenvalues.

Critical Speed Analysis of the Turbopump considering the Casing Structural Flexibility (케이징 구조 유연성을 고려한 터보펌프 임계 속도 해석)

  • 전성민;김진한;곽현덕;윤석환
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.92-97
    • /
    • 2006
  • A critical speed analysis is performed for a 30 ton thrust turbopump considering the casing structural flexibility. A full three-dimensional finite element method including rotor and casing is used to predict rotordynamic behavior. Rotor alone model and rotor-casing coupled model with fixed-fixed and free-free boundary conditions are calculated to investigate the effects of the casing structural flexibility. The stiffness of ball bearings are applied as unloaded and loaded values to consider rotor operating conditions in vacuum and real engine respectively. From the results of the numerical analyses, it is found that the effect of the casing structural flexibility reduces the critical speeds of the turbopump. Especially, the loaded rotor condition with higher bearing stiffness is affected dramatically rather than the unloaded rotor condition with lower bearing stiffness.

Development of Rotordynamics Program Based on the 2D Finite Element Method for Flywheel Energy Storage System (2차원 유한요소법을 적용한 플라이휠 에너지 저장 장치 동특성 해석 프로그램 개발)

  • Gu, Dong-Sik;Bae, Yong-Cae;Lee, Wook-Ryun;Kim, Jae-Gu;Kim, Hyo-Jung;Choi, Byeong-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1757-1763
    • /
    • 2010
  • Flywheel energy storage system (FESS) is defined as a high speed rotating flywheel system that can save surplus electric power. The FESS is proposed as an efficient energy storage system because it can accumulate a large amount of energy when it is operated at a high rotating speed and no mechanical problems are encountered. The FESS consists of a shaft, flywheel, motor/generator, bearings, and case. It is difficult to simulate rotor dynamics using common structure simulation programs because these programs are based on the 3D model and complex input rotating conditions. Therefore, in this paper, a program for the FESS based on the 2D FEM was developed. The 2D FEM can model easier than 3D, and it can present the multi-layer rotor with different material each other. Stiffness changing of the shaft caused by shrink fitting of the hub can be inputted to get clear solving results. The results obtained using the program were compared with those obtained using the common programs to determine any errors.