• Title/Summary/Keyword: 유한요소 해석코드

Search Result 207, Processing Time 0.022 seconds

Evaluation of structural integrity of the HP vaporizer and pipes of LNG fuel gas supply system (LNG 연료 선박용 FGSS의 고압 기화기와 출입구 배관에 대한 구조 건전성 평가)

  • Kim, Chang-Soo;Yoon, Joo-Hwan;Lee, Chang-Joon;Ha, Man-Young;Cho, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.780-785
    • /
    • 2016
  • Heavy oil used as ship propulsion has a serious issue regarding exhaust emission of global warming. Recently, among large-scale merchant ships are using LNG as green ships so called ech-ships. In this study, an vaporizer and pipes under cryogenic and high pressure load were considered to evaluate structural integrity according to codes. Structural analysis of the vaporizer and pipes was performed using the commercial code, ANSYS. Integrity evaluation of the vaporizer based on von Mises stress was performed in accordance with allowable stress specified in ASME Boiler & Pressure Vesssel Section VIII Division 2. To assess structural integrity of the pipes, stress components were combined and compared with ASME B31.3. The calculated stresses for all load cases are lower than allowable stresses, therefore the structural integrity of equipments are verified.

Development of Prefabricated Slab Panel for Asphalt Concrete Track (아스팔트 콘크리트 궤도용 사전제작형 슬래브 패널 개발)

  • Baek, In-Hyuk;Lee, Seong-Hyeok;Shin, Eung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.75-82
    • /
    • 2019
  • Slab panels are very important to develop asphalt concrete (AC) track for minimizing the roadbed stress due to the train load and reducing the plastic deformation of infrared-sensitive AC. In this study, the slab panel for AC track was developed through the shape design and the indoor performance test and its structural integrity has been investigated through the finite element analysis under the flexural tensile stress and the design moment according to various static load combination by KRL-2012 standard train load model and KR-C code. In order to verify the suitability of the slab panel for AC track, static bending strength test and dynamic bending strength test were performed according to EN 13230-2. Results show that the slab panel for AC track satisfies all the performance standards required by European standards such as crack loads and crack extension.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Structural Analysis of PWR(pressurized water reactor) Canister for Applied Impact Force Occurring at the Moment of Falling Plumb Down Collision (추락낙하 충돌 시 가해지는 충격에 대한 경수로(PWR) 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2011
  • In this paper a structural analysis of the PWR(pressurized water reactor) canister with 102cm diameter is carried out to evaluate the structural safety of the canister for the impact force occurring at the moment of collision with the ground in the falling plumb down accident from the carriage vehicle which may happen during the canister handling at the spent nuclear fuel disposal repository. For this, a rigid body dynamic analysis of the canister is executed to compute the impact force using the commercial CAE system, RecurDyn, and a nonlinear structural analysis is performed to compute stresses and deformations occurring inside the canister for this computed impact force using the commercial FEM code, NISA. From these analysis results, the structural safety of the canister is evaluated for the falling plumb down accident from the carriage vehicle due to the inattention during the canister handling at the repository. The rigid body dynamic analysis performed assuming the canister as a rigid body shows that the canister falls plumb down to the ground in two types. And also it shows that early collision impact force is the biggest one and following impact forces decrease gradually. The height of the carriage vehicle in the repository is assumed as 5m in order to obtain the stable structural safety evaluation result. The nonlinear structural analysis of the canister is executed for the biggest early impact force. The structural analysis result of the canister shows that the structural safety of the PWR canister is not secured for the falling plumb down accident from the moving carriage vehicle because the maximum stresses occurring in the cast iron insert of canister are bigger than the yield stress of the cast iron.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.