• Title/Summary/Keyword: 유한요소 코드

Search Result 231, Processing Time 0.022 seconds

Reliability Evaluation of a Composite Pressure Vessel (복합재 압력 용기의 신뢰도 예측)

  • Hwang Tae-Kyung;Park Jae-Beom;Kim Hyoung-Geun;Doh Young-Dae;Moon Soon-Il
    • Composites Research
    • /
    • v.19 no.3
    • /
    • pp.7-14
    • /
    • 2006
  • In this paper, an integrated probabilistic strength analysis was conducted to predict the reliability of a composite pressure vessel under inner pressure loading condition. As a probabilistic strength analysis, the probabilistic progressive failure model consisting of progressive failure model and Monte Carlo simulation was incorporated with a commercial FEA code, ABAQUS Standard, to perform the probabilistic failure analysis of composite structure which has a complex shape and boundary conditions. As design random variables, the laminar strengths of each direction were considered. Finally, from probabilistic strength analysis, the scattering of burst pressure could be explained and the reliability of composite pressure vessel could be obtained for each component. In case of composite structures in mass production, the effects of uncertainties in material and manufacturing on the performance of composite structures would apparently become larger. So, the probabilistic strength analysis is essential for the structural design of composite structures in mass production.

Structural Design and Analysis for Carbon/Epoxy Composite Wing of A Small Scale WIG Vehicle (소형 위그선의 탄소/에폭시 복합재 주익의 구조 설계 및 해석에 관한 연구)

  • Park, Hyun-Bum;Kang, Kuk-Jin;Kong, Chang-Duk
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.12-19
    • /
    • 2006
  • In this paper, conceptual structural design of the main wing for a small scale WIG(Wing in Ground Effect) among high speed ship projects, which will be a high speed maritime transportation system for the next generation in Rep. of Korea, was performed. The Carbon/Epoxy material was selected for the major structure, and the skin-spar with a foam sandwich structural type was adopted for improvement of lightness and structural stability. As a design procedure for the present study, firstly the design load was estimated through the critical flight load case study, and then flanges of the front and rear spars from major bending loads and the skin and the spar webs from shear loads were preliminarily sized using the netting rule and the rule of mixture. Stress analysis was performed by a commercial FEA code, NASTRAN. From the stress analysis results for the first designed wing structure, it was confirmed that the upper skin between the front spar and the rear spar was unstable fer the buckling. Therefore in order to solve this problem, a middle spar and the foam sandwich type structure at the skin and the web were added. After design modification, the structural safety and stability for the final design feature was confirmed. In addition to this, the insert bolt type structure with eight high strength bolts to fix the wing structure to the fuselage was adopted for easy assembly and removal as well as in consideration of more than 20 years fatigue life.

원자로내 용융물 재배치시 용기 하부의 온도 거동

  • Kang, Kyung-Ho;Kim, Jong-Hwan;Kim, Sang-Baek;Kim, Hui-Dong;Kim, Hyun-Seop;Heo, Hun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.581-586
    • /
    • 1997
  • 중대사고시 노심의 손상에 의한 노심용융물이 원자로 용기 하부 반구로 재배치될 때 고온의 노심용융물에 의한 열적 부하로 원자로 용기의 파손을 일으키게 된다. 원자로 용기하부 반구 내에서의 노심용융물의 열적 거동 및 하부 반구에 대한 열적 부하에 대한 분석은 용융물의 성분 및 재배치 과정의 복잡성 등으로 인한 실험적 모사의 한계성 및 현상 분석의 난이함에도 불구하고 기존 원자로의 중대사고에 대한 안전 여유도의 제고와 이에 따른 노내외 사고 관리 전략의 수립을 위하여 연구의 필요성이 제기된다. 본 연구에서는 노심용융물 냉각연구(SONATA-IV)의 예비 실험으로 노심용융물의 상사물로 $Al_2$O$_3$/Fe Thermite 용융물을 이용하여 실제 원자로 용기 하부 반구를 1/8 로 선형 축소한 반구형 실험 용기로 주입하는 실험을 수행하였다. 아울러 원자로 용기 하부 반구로 재배치된 노심용융물에 의한 열적, 기계적 부하에 대한 분석을 수행하기 개발된 유한 요소 프로그램인 CALF (Computer Analysis for Lower Head Failure ) 코드를 이용한 하부 반구의 열적 거동에 대한 해석 결과를 정리하였다. 용융물 주입 실험 결과 용융물 주입과 동시에 하부 반구에 직경 5cm 크기의 하부 반구 파손이 발생하였다. 이는 고온 용융물에 의한 제트류(Jet Impingement)의 효과로 생각된다 동일한 조건에서 CALF 코드로 하부 반구의 열적 거동을 분석하였는데, 실험과는 달리 하부 반구의 파손이 발생하지 않았다 이같은 해석 결과는 용융물의 제트류 효과가 존재하지 않는다면 고온의 용융물이 하부 반구 내로 재배치되더라도 하부 반구의 파손이 발생하지 않는다는 것을 보여준다.>$_3$ 흡착제 제조시 TiO$_2$ 함량에 따른 Co$^{2+}$ 흡착량과 25$0^{\circ}C$의 고온에서 ZrO$_2$$Al_2$O$_3$의 표면에 생성된 코발트 화합물을 XPS와 EPMA로 부터 확인하였다.인을 명시적으로 설명할 수 있다. 둘째, 오류의 시발점을 정확히 포착하여 동기가 분명한 수정대책을 강구할 수 있다. 셋째, 음운 과 정의 분석 모델은 새로운 언어 학습시에 관련된 언어 상호간의 구조적 마찰을 설명해 줄 수 있다. 넷째, 불규칙적이며 종잡기 힘들고 단편적인 것으로만 보이던 중간언어도 일정한 체계 속에서 변화한다는 사실을 알 수 있다. 다섯째, 종전의 오류 분석에서는 지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지니지 않은 단순한 단어(minim

  • PDF

A Study on the Geometric Design Parameters for Optimization of Cooling Device in the Magnetocardiogram System (심자도 장비의 냉각장치 특성 최적화를 위한 기하 설계 변수 연구)

  • Lee, Jung-Hee;Lee, Young-Shin;Lee, Yong-Ho;Lim, Hyun-Kyoon;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.153-160
    • /
    • 2010
  • A magnetocardiogram (MCG) is a recording of the biomagnetic signals generated by cardiac electrical activity. Biomagnetic instruments are based on superconducting quantum interference devices (SQUIDs). A liquid cryogenic Dewar flask was used to maintain the superconductors in a superconducting state at a very low temperature (4 K). In this study, the temperature distribution characteristics of the liquid helium in the Dewar flask was investigated. The Dewar flask used in this study has a 30 L liquid helium capacity with a hold time of 5 d. The Dewar flask has two thermal shields rated at 150 and 40 K. The temperatures measured at the end of the thermal shield and calculated from the computer model were compared. This study attempted to minimize the heat transfer rate of the cryogenic Dewar flask using an optimization method about the geometric variable to find the characteristics for the design geometric variables in terms of the stress distribution of the Dewar flask. For thermal and optimization analysis of the structure, the finite element method code ANSYS 10 was used. The computer model used for the cryogenic Dewar flask was useful to predict the temperature distribution for the area less affected by the thermal radiation.

Seismic Behavior and Performance Evaluation of Uckling-restrained Braced Frames (BRBFs) using Superelastic Shape Memory Alloy (SMA) Bracing Systems (초탄성 형상기억합금을 활용한 좌굴방지 가새프레임 구조물의 지진거동 및 성능평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.875-888
    • /
    • 2013
  • The researches have recently progressed toward the use of the superelastic shape memory alloys (SMAs) to develop new smart control systems that reduce permanent deformation occurring due to severe earthquake events and that automatically recover original configuration. The superelastic SMA materials are unique metallic alloys that can return to undeformed shape without additional heat treatments only after the removal of applied loads. Once the superelastic SMA materials are thus installed at the place where large deformations are likely to intensively occur, the structural system can make the best use of recentering capabilities. Therefore, this study is intended to propose new buckling-restrained braced frames (BRBFs) with superelastic SMA bracing systems. In order to verify the performance of such bracing systems, 6-story braced frame buildings were designed in accordance with the current design specifications and then nonlinear dynamic analyses were performed at 2D frame model by using seismic hazard ground motions. Based on the analysis results, BRBFs with innovative SMA bracing systems are compared to those with conventional steel bracing systems in terms of peak and residual inter-story drifts. Finally, the analysis results show that new SMA bracing systems are very effective to reduce the residual inter-story drifts.

A Study on Applicability of Tensile Constitutive Model of Steel Fiber Reinforced Concrete in Model Code 2010 (Model Code 2010에 제시된 강섬유 보강 콘크리트의 인장 구성모델 적용성 고찰)

  • Yeo, Dong-Jin;Kang, Duk-Man;Lee, Myung-Seok;Moon, Do-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.5
    • /
    • pp.581-592
    • /
    • 2016
  • Tensile constitutive stress-strain model of steel fiber reinforced concrete (SFRC) in fib MC2010 was investigated. In order to model tensile behavior of SFRC, three point loading flexural tests were conducted on notched small beams according to BE-EN-14651. Design parameters for the constitutive model were determined from the flexural tests. Flexural test and finite element analysis were conducted on large SFRC beam without steel reinforcements and compared with each other. In addition, parametric study on the effect of compressive and tensile model, and characteristic length on flexural behavior of the SFRC beam was conducted also. In results, pre-peak load-displacement curves from the FE analysis was close to experimental curves but significant difference was shown in post-peak behavior. The reason of the difference is originated from the fact that the fiber distribution and orientation were not being properly considered in the MC2010 model. This study shows that modification and detail explanations on the orientation factor K in MC2010 might require to better reproduce the behaviour of large scale SFRC beams.

Transient Heat Transfer Analysis and Fire Test for Evaluation on Fire Resistance Performance of A60 Class Deck Penetration Piece (A60급 갑판 관통 관의 방화성능 평가를 위한 과도 열전달 해석과 화재시험)

  • Park, Woo Chang;Song, Chang Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and prevent flame diffusion in fire accidents. In case that the A60 piece is newly developed or its initial design is revised, it is important to verify the fire resistance performance using a fire test procedure (FTP) code. In this paper, transient heat transfer analysis was carried out to evaluate the fire resistance design compatibility of the newly devised A60 piece. The analysis results were verified via a fire test. The heat transfer characteristics were also investigated by comparing design specifications, such as diameter, internal configuration, and material type. The analysis was performed using ABAQUS/Implicit, and the fire test was performed according to the FTP code. The fire resistance performance of the A60 pieces satisfied the safety of life at sea convention regulation. The material type was the most important design specification for the A60 piece. Based on the maximum test temperature, the measured temperature of SUS316L material was 25% lower than that of S45C on average. The differences between thermal conductivity and specific heat of each material were 17% and 58%, respectively.

A Study on Load-carrying Capacity Design Criteria of Jack-up Rigs under Environmental Loading Conditions (환경하중을 고려한 Jack-up rig의 내하력 설계 기준에 대한 연구)

  • Park, Joo Shin;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.103-113
    • /
    • 2020
  • Jack-up drilling rigs are widely used in the offshore oil and gas exploration industry. Although originally designed for use in shallow waters, trends in the energy industry have led to a growing demand for their use in deep sea and harsh environmental conditions. To extend the operating range of jack-up units, their design must be based on reliable analysis while eliminating excessive conservatism. In current industrial practice, jack-up drilling rigs are designed using the working(or allowable) stress design (WSD) method. Recently, classifications have been developed for specific regulations based on the load and resistance factor design (LRFD) method, which emphasises the reliability of the methods. This statistical method utilises the concept of limit state design and uses factored loads and resistance factors to account for uncertainly in the loads and computed strength of the leg components in a jack-up drilling rig. The key differences between the LRFD method and the WSD method must be identified to enable appropriate use of the LRFD method for designing jack-up rigs. Therefore, the aim of this study is to compare and quantitatively investigate the differences between actual jack-up lattice leg structures, which are designed by the WSD and LRFD methods, and subject to different environmental load-to-dead-load ratios, thereby delineating the load-to-capacity ratios of rigs designed using theses methods under these different enviromental conditions. The comparative results are significantly advantageous in the leg design of jack-up rigs, and determine that the jack-up rigs designed using the WSD and LRFD methods with UC values differ by approximately 31 % with respect to the API-RP code basis. It can be observed that the LRFD design method is more advantageous to structure optimization compared to the WSD method.

Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System (고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석)

  • Park Jeong-Hwa;Lee Jae-Owan;Kwon Sang-Ki;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.117-131
    • /
    • 2006
  • A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at $90^{\circ}C$ at the interface between the heater and the bentonite and at about $70^{\circ}C$ at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.

  • PDF

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF