• Title/Summary/Keyword: 유한요소 강도해석

Search Result 1,139, Processing Time 0.023 seconds

Buckling Analysis of Stiffened Plates with Elastic Supports Subjected to In-Plane Bending Moment Considering Warping of End Stiffeners (지지단 보강재의 뒤틀림을 고려한 면내휨을 받는 탄성지지 보강판의 좌굴해석)

  • 이용수
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-148
    • /
    • 1997
  • The main objective of this paper is to analyze the rectangular stiffened plates with two opposite ends elastically restrained and the others simply supported subjected to in-plane bending by Finite Element Method. Another objective is to develope Classical Method analyzing the unstiffened rectangular plates with the above boundary conditions. In order to validate finite element and classical methods, the buckling strengths of the rectangular plates with four simply supported ends, and with two simply supported and the others fixed ends by finite element method and classical method are compared with those of references. In finite element method, elastically restrained ends can be obtained as considering torsional and warping rigidities of end stiffeners. The buckling strengths of the rectangular plates with elastically restrained ends by finite element and classical methods are calculated and compared with each other. In case of stiffened plates, to validate finite element method, the buckling strengths of the rectangular stiffened plates with four simply supported ends, and with two simply supported and the others fixed ends are also compared with those of references. The buckling strengths of the rectangular stiffened plates with elastically restrained ends by finite element method are calculated as solving eigenvalue problems which are obtained as assembling rectangular plate elements and beam elements considered torsional and warping rigidities. The buckling strengths of rectangular stiffened plates according to various positions of rectangular intermediate stiffener, J and I/sub w/ of end stiffeners are also obtained, which are compared to determine the efficient position of intermediate stiffener.

  • PDF

Development of Membrane material for Stratospheric Airship (성층권 비행선용 막재료 개발)

  • Kang, Wang-Gu;Woo, Kyeong-Sik;Lee, Han-Geol;Kim, Dong-Min;Yeom, Chan-Hong;Lee, In;Hong, Eu-Seok
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.221-225
    • /
    • 2005
  • 성층권 비행선 기낭용 막재료를 개발하였다. 성층권 비행선을 구현하기 위한 초경량/고강도의 막재료를 설계 개발하였다. 요구조건을 만족시키기 위하여 벡트란, 테들라 등의 최신 고분자 화합물을 적층한 막재를 개발하였다. 개발된 막재료에 대한 유한요소 미세구조 모델링을 수행하고, 물성치를 예측하였다. 막재료에 대한 물성시험을 수행하였다. 단위 시편에 대한 강도-강성 시험을 수행하였으며, 이를 유한요소 예측치와 비교하였다.

  • PDF

Strength Characterisation of Composite Securement Device in the Vehicle by FE Analysis (유한요소해석을 통한 차량내 복합재 휠체어 고정구의 구조 강도 특성 평가)

  • Ham, Seok-Woo;Yang, Dong-Gyu;Son, Seung-Neo;Eo, Hyo-Kyoung;Kim, Gyeong-Seok;Cheon, Seong S.
    • Composites Research
    • /
    • v.32 no.4
    • /
    • pp.171-176
    • /
    • 2019
  • In this paper, the strength of the composite securement device was characterised by FE analysis. Preliminary frontal crash analysis for the vehicle, equipped with the conventional steel securement device, was carried out according to the ISO 10542 for special transportation to obtain loading data, which were applied to securement device during crash. The securement device consists of block, guide and rail and the weight fraction of rail was the highest among them, therefore, it is desirable to reduce weight of rail by applying carbon/epoxy composite. Also, it was found that 27% of lightweight effect was obtained by hybrid rail that bottom part was replaced by a composite compared to the conventional rail, i.e., made of SAPH 440, without sacrificing the structural strength.

Ultimate Flexural Strength of Cylindrical Steel Shell for Wind Tower (풍력발전 타워용 원형단면 강재 쉘의 극한휨강도)

  • Ahn, Joon Tae;Shin, Dong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.109-118
    • /
    • 2015
  • Ultimate flexural buckling strength of cylindrical steel shells for the wind turbine tower structure was investigated by applying the geometrically and materially nonlinear finite element method. The effects of initial imperfection, radius to thickness ratio, and type of steel on the ultimate flexural strength of cylindrical shell were analyzed. The flexural strengths of cylindrical shells obtained by FEA were compared with design flexural strengths specified in Eurocode 3 and AISI. The shell buckling modes recommended in DNV-RP-C202 and the out-of-roundness tolerance and welding induced imperfections specified in Eurocode 3 were used in the nonlinear FE analysis as initial geometrical imperfections. The radius to thickness ratios of cylindrical shell in the range of 60 to 210 were considered and shells are assumed to be made of SM520 or HSB800 steel.

Bucking Behavior of Slender Reinforced High-Strength Concrete Columns (고강도 철근콘크리트 기둥의 좌굴 거동에 관한 연구)

  • 김진근;양주경
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.2
    • /
    • pp.129-139
    • /
    • 1993
  • 본 연구에서는 철근콘크리트 기둥의 거동을 예측하기 위하여 층상화 방법을 이용한 유한요소 해석방법이 제안되었다. 콘크리트의 강도와 철근비가 기둥의 극한강도와 거동에 미치는 영향을 규명하기 위하여 세장비가 10, 60, 100인 정방형 단면(80$\times$80mm)을 갖는 30개의 기둥에 대하여 실험을 수행하였다. 이때, 콘크리트의 강도는 25.5, 63.5, 86.2MPa로, 철근비는 1.98, 3.95%로 변화시켰다. 또한, 단부조건은 양단힌지로 하고, 편심량은 기둥은 양단에서 같은 방향으로 24mm로 동일하게 하였다. 본 연구에서 제안된 해석방법은 철근콘크리트 기둥의 거동을 잘 예측하며, ACI의 모멘트 확대계수법은 고강도 콘크리트 장주에 대해서는 안전측이 아닌 것으로 나타났다. 콘크리트의 강도가 기둥의 극한강도에 미치는 영향은 기둥의 세장비가 증가할수록 감소하였으며, 콘크리트의 강도가 커질수록 세장기둥의 좌굴파괴 가능성은 증가하였다. 또한, 철근비를 증가시킬 경우, 기둥의 축력이 최대가 될 때의 모멘트가 증가되었으며, 기둥의 극한강도 증가량은 단주보다는 장주에서 더 크게 나타났다. 철근비 증가에 의해 나타나는 이러한 기둥의 극한강도 증가량과 모멘트 증가량은 콘크리트의 강도가 커질수록 증대되었다.

Evaluation of Compressive Chord Plastification of Circular Hollow Section X-joint Truss Connection (원형강관 X-이음 트러스접합부의 압축 주강관소성화 평가)

  • Lee, Kyungkoo;Sin, Yong Sup;Son, Eun Ji
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.447-454
    • /
    • 2015
  • The researches on circular hollow section(CHS) connections have been conducted continuously because of development of material properties and complex local behavior of the connections. The purpose of this study is that the effects of material strength and chord wall slenderness on chord plastification and strength of CHS X-joint truss connection under compression on branch member were evaluated. To this end, finite element analyses were performed for various connections, using ANSYS Mechanical APDL program. Based on the analysis results, the design strength of the connections according to chord plastification limit state in KBC were examined. Finally, special considerations for CHS X-joint connection design were suggested.

A Consideration with Load Height Effects for Inelastic Lateral-Torsional Buckling of Stepped Beam Subjected to a Concentration Load (집중하중을 받는 I형 스텝보의 비탄성 횡-비틀림 좌굴강도에 하중고 효과가 미치는 영향 고찰)

  • Park, Yi-Seul;Oh, Jeong-Jae;Park, Jong-Sub
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.464-467
    • /
    • 2011
  • 본 논문에서는 기존에 수행된 비탄성 영역 내 비지지 길이가 존재하고 균일단면을 가지는 I형 보의 좌굴 강도에 대한 해석적 이론적 연구를 토대로 변단면 I형보의 하중고 효과를 고려한 비탄성 횡-비틀림 좌굴강도에 대한 연구를 수행하였다. 유한요소해석에는 4절점 쉘요소인 S4R요소가 사용되었고, 플랜지 길이방향 비, 너비방향 비, 두께의 비로 스텝보를 나타내었으며, 집중하중을 작용시켰다. 개발된 좌굴강도 제안식은(오정재 등, 2011)과 해석결과를 하중고 효과 평가 시 큰 단면변화를 보이는 경우를 제외하고는 ${\pm}10%$의 오차범위를 나타내었다. 본 연구 결과는 다양한 형식의 I형보가 사용되는 빌딩 및 교량의 경제적이고 합리적인 설계의 근간을 제공해 줄 것이며, 향후 비탄성 횡-비틀림 좌굴강도에 대한 연구에도 많은 도움이 될 것이다.

  • PDF

Residual Stress Distribution on the Fillet Weldment used by Finite Element Method (유한요소법을 이용한 필렛용접 이음부의 잔류응력분포)

  • Kim, Hyun Sung;Woo, Sang Ik;Jung, Kyoung Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.2 s.45
    • /
    • pp.197-207
    • /
    • 2000
  • A transient heat transfer analysis and thermo-elastic analysis have been performed for the residual stress distribution on the fillet weldment used by finite element method. Specimen is fabricated single-pass fillet welding. This computation was performed for conditions including surface heat flux and temperature dependent thermo-physical properties using by heat input as parameter. Also, cut-off temperature of residual stress estimation by thermo-elastic analysis is determined. The fillet weldment were measured to determined their residual stress distributions for using hole-drilling method. As result, it was found that large tensile residual stress is about material yield strength, and the numerical simulation results for finite element method similar to residual stresses by hole-drilling method and other exiting research. Also, cut-off temperature is effectively determined by temperature which calculated maximum thermal stress equal to material yield strength.

  • PDF

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building (격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소)

  • Lee, Hong-Pyo;Choun, Young-Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.577-585
    • /
    • 2009
  • A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

Probabilistic finite Element Analysis of Eigenvalue Problem- Buckling Reliability Analysis of Frame Structure- (고유치 문제의 확률 유한요소 해석)

  • 양영순;김지호
    • Computational Structural Engineering
    • /
    • v.4 no.2
    • /
    • pp.111-117
    • /
    • 1991
  • The analysis method calculating the mean and standard deviation for the eigenvalue of complicated structures in which the limit state equation is implicitly expressed is formulated and applied to the buckling analysis by combining probabilistic finite element method with direct differential method which is a kind of sensitivity analysis technique. Also, the probability of buckling failure is calculated by combining classical reliability techniques such a MVFOSM and AFOSM. As random variables external load, elastic modulus, sectional moment of inertia and member length are chosen and Parkinson's iteration algorithm in AFOSM is used. The accuracy of the results by this study is verified by comparing the results with the crude Monte Carlo simulation and Importance Sampling Method. Through the case study of some structures the important aspects of buckling reliability analysis are discussed.

  • PDF