• Title/Summary/Keyword: 유한요소예측

Search Result 1,418, Processing Time 0.029 seconds

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

Ambient Vibration Testing and System Identification for Tall Buildings (고층건물의 자연 진동실험 및 시스템판별)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.23-33
    • /
    • 2012
  • Dynamic response measurements from natural excitation were carried out for three 18-story office buildings to determine their inherent properties. The beam-column frame system was adopted as a typical structural form, but a core wall was added to resist the lateral force more effectively, resulting in a mixed configuration. To extract modal parameters such as natural frequencies, mode shapes and damping ratios from a series of vibration records at each floor, the most advanced operational system identification methods based on frequency- and time-domain like FDD, pLSCF and SSI were applied. Extracted frequencies and mode shapes from the different identification methods showed a greater consistency for three buildings, however the three lower frequencies extracted were 1.2 to 1.7 times as stiff as those obtained using the initial FE models. Comparing the extracted fundamental periods with those estimated from the code equations and FE analysis, the FE analysis results showed the most flexible behavior, and the most simple equation that considers the building height as the only parameter correlated fairly well with test results. It is recognized that such a discrepancy arises from the fact that the present tests exclude the stiffness decreasing factors like concrete cracking, while the FE models ignore the stiffness increasing factors, such as the contribution of non-structural elements and the actual material properties used.

Computational Modal Analyses for the Propellant Tank and Small-Scaled First-Stage Models of Liquid-Propulsion Launch Vehicles (우주 발사체 추진제 탱크 및 축소 1단 모델의 전산 모드 해석 연구)

  • Sim, Chang-Hoon;Kim, Geun-Sang;Kim, Dong-Goen;Kim, In-Gul;Park, Soon-Hong;Park, Jae-Sang
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.18-25
    • /
    • 2018
  • This research aims to establish the finite-element modeling techniques for computational modal analyses of liquid propellants and flange joints of launch-vehicle structures. MSC.NASTRAN is used for the present computational modal analyses of the liquid-propellant tank and the small-scaled first-stage model. By means of the correlation between the measured and computed natural frequencies, the finite modeling techniques for liquid propellants and flange joints of launch-vehicle structures are established appropriately. This modal analysis using the virtual-mass method predicts well the bell mode of the liquid-propellant tank containing liquid. In addition, the present computation using RBE2 elements for modeling of flange joints predicts the first and second bending-mode frequencies within a relative error of 10%, which is better than the measured frequencies obtained from the modal test, for the small-scaled first-stage model containing liquid.

Design Graphs for Asphalt Concrete Track with Wide Sleepers Using Performance Parameters (성능요소를 반영한 광폭 침목형 아스팔트콘크리트 궤도 설계그래프)

  • Lee, SeongHyeok;Lim, Yujin;Song, Geunwoo;Cho, Hojin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2016
  • Wheel load, design velocity, traffic amount (MGT), stiffness and thickness of sub-layers of asphalt concrete track are selected as performance design parameters in this study. A pseudo-static wheel load computed considering the dynamic amplification factor (DAF) based on the design velocity of the KTX was applied to the top of asphalt concrete track for full three dimensional structural analysis using the ABAQUS program. Tensile strains at the bottom of the asphalt concrete layer and vertical strains at the top of the subgrade were computed from the structural FEA with different combinations of performance parameter values for one asphalt concrete track section. Utilizing the computed structural analysis results such as the tensile strains and the vertical strains, it was possible to develop design graphs to investigate proper track sections for different combination of the performance parameters including wheel load, design velocity, traffic amount(MGT), stiffness and thickness of asphalt concrete layers for any given design life. By analyzing the proposed design graphs for asphalt concrete track, it was possible to propose simple design tables that can be used by engineers for the effective and fast design of track.

Development of Efficient Analytical Model for a Diagrid Mega-Frame Super Tall Building (다이어그리드 메가프레임 초고층 건물을 위한 효율적인 해석모델의 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.95-103
    • /
    • 2011
  • Among structural systems for complex-shaped tall buildings, diagrid system is widely used because of its structural efficiency and beauty of form. Recently, mega frame is favorably employed as a suitable structural system for skyscrapers because this structural system has sufficient stiffness against the lateral forces by combination of mega members which consist of many columns and girders. Diagrid mega frame system is expected to be promising structural system for future super tall buildings. However, it takes tremendous analysis times and engineer's efforts to predict the structural behavior of tall buildings applied with diagrid mega frame system because the diagrid mega frame structure has significant numbers of elements and nodes. Therefore, efficient analytical method for all buildings applied with diagrid mega frame system has been proposed in this study to reduce the efforts and time required for the analysis and design of diagrid mega frame structure. To this end, an efficient modelling technique using the characteristics of diagrid mega frame structures and an efficient analytical model using minimal DOFs by the matrix condensation method were proposed in this study. Based on the analysis of an example structure, the effectiveness and accuracy of the proposed method have been verified by the comparison between the results of the proposed method and the conventional method.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

The Wavelet Series Analysis for the Fourth-order Elliptic Differential Equation (4계 타원형 미분 방정식을 위한 웨이블릿 급수해석)

  • Jo, Jun-Hyung;Woo, Kwang-Sung;Sin, Young-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.355-364
    • /
    • 2011
  • In this study, the details of WSA(wavelet series analysis) have been demonstrated to solve the 4th-order elliptic differential equation. It is clear to solve the 2nd-order elliptic differential equation with the basis function of Hat wavelet series that is used in the previous study existed in $H^1$-space. However, it is difficult to solve the 4th order differential equation with same basis function of Hat wavelet series because of insufficient differentiability and integrability. To overcome this problem, the linear equations in terms of moment and deflection have been formulated and solved sequentially that are similar to extension of Elastic Load Method and Moment Area Method in some senses. Also, the differences and common points between the proposed method and the meshless method are discussed in the procedure of WSA formulation. As we expect, it is easy to ascertain that the more terms of Hat wavelet series are used, the better numerical solutions are improved. Also the solutions obtained by WSA have been compared with the conventional FEM solutions in case of Euler beam problems with stress singularity.

A Study on the Element Technologies in Flame Arrester of End Line (선박의 엔드라인 폭연방지기의 요소기술에 관한 연구)

  • Pham, Minh-Ngoc;Choi, Min-Seon;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.4
    • /
    • pp.468-475
    • /
    • 2019
  • An end-line flame arrester allows free venting in combination with flame protection for vertical vent applications. End-line flame arresters are employed in various fields, especially in shipping. In flame arresters, springs are essential parts because the spring load and the spring's elasticity determine the hood opening moment. In addition, the spring has to work under a high-temperature condition because of the burning gas flame. Therefore, it is necessary to analyze the mechanical load and elasticity of the spring when the flame starts to appear. Based on simulations of the working process of a specific end-line flame arrester, a thermal and structural analysis of the spring is performed. A three-dimensional model of a burned spring is built using computational fluid dynamics (CFD) simulation. Results of the CFD analysis are input into a finite element method simulation to analyze the spring structure. The research team focused on three cases of spring loads: 43, 93, and 56 kg, correspondingly, at 150 mm of spring deflection. Consequently, the spring load was reduced by 10 kg after 5 min under a $1,000^{\circ}C$ heat condition. The simulation results can be used to predict and estimate the spring's load and elasticity at the burning time variation. Moreover, the obtained outcome can provide the industry with references to optimize the design of the spring as well as that of the flame arrester.

A Study on Structural Characteristics of Axial Fans Operating Speed Using Finite Element Analysis (유한요소해석을 이용한 축류팬 운전속도별 구조특성에 대한 연구)

  • Kook, Jeong-Keun;Cho, Byung-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.593-601
    • /
    • 2021
  • The axial fan is an element of a blower used for ventilation in various industrial fields. Many studies on aerodynamic performance have been conducted to assess axial fans using fluid dynamics. The subject was a large axial fan size, 1800 mm in diameter with 100 horsepower. The blower's axial fan consisted of blades, hubs, hub caps, and bosses are important components. The blade design has a great influence on the aerodynamic performance. 3D point data is extracted using an aerodynamic performance prediction program, and a 3D modeling shape is generated. The blades and hubs, which are important components, can be easily modified if processed by cutting owing to the environment in which blades and hubs are manufactured through die casting or gravity casting. In this study, the structural safety of components and the analysis results of weak areas at the rated operating speed of the axial fan were verified using the maximum stress and safety factor. The tip clearance reflected in the design was the rotation of the blade. To check whether there is interference with other components, the displacement result was derived to verify the structural safety of the axial fan.