• Title/Summary/Keyword: 유클리디안 거리

Search Result 102, Processing Time 0.03 seconds

Music Therapy Counseling Recommendation Model Based on Collaborative Filtering (협업 필터링 기반의 음악 치료 상담 추천 모델)

  • Park, Seong-Hyun;Kim, Jae-Woong;Kim, Dong-Hyun;Cho, Han-Jin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.31-36
    • /
    • 2019
  • Music therapy, a field that convergence music and treatment, which play a fundamental role in personality formation, possesses diverse and complex treatment methods. Music therapists in charge of music therapy may experience the same phenomenon as countertransference in consultation with clients. In addition, experiencing psychological burnout, there are many difficulties in reaching the final goal of music therapy. In this paper, we provide a collaborative filtering-based music therapy consultation data recommendation model for smooth music therapy consultation with clients who visited for music therapy. The proposed model grasps the similarity between the conventional consultation data and the new consultant data through the euclidean distance algorithm. This is to recommend similar consultation materials. Since music therapists can provide optimal consultation materials for consultants who need music therapy, smooth consultation is expected.

Comparison of Heuristics in Tactical path-finding Using A* (A*를 이용하는 전술적 경로찾기에서 휴리스틱 성능비교)

  • Kim, Kyung-Hye;Cho, Sujin;Sul, Jeong-A;Yu, Kyeonah
    • Annual Conference of KIPS
    • /
    • 2010.11a
    • /
    • pp.486-489
    • /
    • 2010
  • 전술적 경로찾기에서는 거리나 시간 요소 외에 여러 가지 전술적 요소를 포함한 비용 함수를 사용하여 경로를 탐색한다. 경로찾기에서 가장 많이 이용되는 A* 알고리즘의 경우, 현재 노드에서 목표까지의 추정값을 의미하는 휴리스틱 함수를 이용하는데 대표적인 허용가능 휴리스틱(admissible heuristic)인 유클리디안 거리(Euclidean distance)를 전술적 경로찾기에서 이용하는 경우, 탐색 성능이 저하되는 단점이 있다. 이는 거리이외에 전술적 요소까지 더해진 실제 비용에 비해 직선 거리만을 고려한 휴리스틱 값이 현저하게 작은데 기인한다. 그러므로 본 논문에서는 A*를 이용하는 경로찾기에서 탐색의 성능을 향상시킬 수 있는 두 가지 휴리스틱을 제안하고 이들의 허용성을 분석하고 방문 노드수 비교를 통해 탐색 성능을 비교한다.

Fuzzy K-Nearest Neighbor Algorithm based on Kernel Method (커널 기반의 퍼지 K-Nearest Neighbor 알고리즘)

  • Choi Byung-In;Rhee Frank Chung-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • 커널 함수는 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(FKKNN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상 시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과를 분석한다.

  • PDF

Fuzzy Neural Network Model Using A Learning Rule Considering the Distances Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Soo;Baek Yong-Sun;Lee Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.460-465
    • /
    • 2006
  • This paper presents a new fuzzy learning rule which considers the Euclidean distances between the input vector and the prototypes of classes. The new fuzzy learning rule is integrated into the supervised IAFC neural network 4. This neural network is stable and plastic. We used iris data to compare the performance of the supervised IAFC neural network 4 with the performances of back propagation neural network and LVQ algorithm.

Face Expression Recognition using ICA-Factorial Representation (ICA-Factorial 표현을 이용한 얼굴감정인식)

  • 한수정;고현주;곽근창;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.329-332
    • /
    • 2002
  • 본 논문에서는 효과적인 정보를 표현하는 ICA(Independent Component Analysis)-Factorial 표현 방법을 이용하여 얼굴감정인식을 수행한다. 얼굴감정인식은 두 단계인 특징추출과 인식단계에 의해 이루어진다. 먼저 특징추출방법은 PCA(Principal Component Analysis)을 이용하여 얼굴영상의 고차원 공간을 저차원 특징공간으로 변환한 후 ICA-factorial 표현방법을 통해 좀 더 효과적으로 특징벡터를 추출한다. 인식단계는 최소거리 분류방법인 유클리디안 거리를 이용하여 얼굴감정을 인식한다. 이 방법의 유용성을 설명하기 위해 6개의 기본감정(행복, 슬픔, 화남, 놀람, 공포, 혐오)에 대해 얼굴데이터베이스를 구축하고, 기존의 방법인 Eigenfaces, Fishefaces와 비교하여 좋은 인식성능을 보이고자 한다.

An Efficient Method for Minimum Distance Problem Between Shapes Composed of Circular Arcs and Lines (원호와직선으로 구성된 도형간의 효율적인 최소거리 계산방법)

  • 김종민;김민환
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.848-860
    • /
    • 1994
  • Generally, to get the minimum distance between two arbitrary shapes that are composed of circular arcs and lines, we must calculate distances for all the possible pairs of the components from two given shapes. In this paper, we propose an efficient method for the minimum distance problem between two shapes by using their structural features after extracting the reduced component lists which are essential to calculate the minimum distance considering the relationship of shape location. Even though the reduced component lists may contain all the components of the shapes in the worst case, in the average we can reduce the required computation much by using the reduced component lists. This method may be efectively applied to calculating the minimum distance between two shapes which are generated by the CAD tool, like in the nesting system.

  • PDF

Performance Improvement of Bearing Fault Diagnosis Using a Real-Time Training Method (실시간 학습 방법을 이용한 베어링 고장진단 성능 개선)

  • Cho, Yoon-Jeong;Kim, Jae-Young;Kim, Jong-Myon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.4
    • /
    • pp.551-559
    • /
    • 2017
  • In this paper, a real-time training method to improve the performance of bearing fault diagnosis. The traditional bearing fault diagnosis cannot classify a condition which is not trained by the classifier. The proposed 4-step method trains and recognizes new condition in real-time, thereby it can classify the condition accurately. In the first step, we calculate the maximum distance value for each class by calculating a Euclidean distance between a feature vector of each class and a centroid of the corresponding class in the training information. In the second step, we calculate a Euclidean distance between a feature vector of new acquired data and a centroid of each class, and then compare with the allowed maximum distance of each class. In the third step, if the distance between a feature vector of new acquired data and a centroid of each class is larger than the allowed maximum distance of each class, we define that it is data of new condition and increase count of new condition. In the last step, if the count of new condition is over 10, newly acquired 10 data are assigned as a new class and then conduct re-training the classifier. To verify the performance of the proposed method, bearing fault data from a rotating machine was utilized.

Finger Recognition using Distance Graph (거리 그래프를 이용한 손가락 인식)

  • Song, Ji-woo;Heo, Hoon;Oh, Jeong-su
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.819-822
    • /
    • 2016
  • This paper proposes an algorithm recognizing finger using a distance graph of a detected finger's contour in a depth image. The distance graph shows angles and Euclidean distances between the center of palm and the hand contour as x and y axis respectively. We can obtain hand gestures from the graph using the fact that the graph has local maximum at the positions of finger tips. After we find the center of mass of the wrist using the fingers is thinner than the palm, we make its angle the orienting angle $0^{\circ}$. The simulation results show that the proposed algorithm can detect hand gestures well regardless of the hand direction.

  • PDF

Phoneme Similarity Error Correction System using Bhattacharyya Distance Measurement Method (바타챠랴 거리 측정법을 이용한 음소 유사율 오류 보정 개선 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Vocabulary recognition system is providing inaccurate vocabulary and similar phoneme recognition due to reduce recognition rate. It's require method of similar phoneme recognition unrecognized and efficient feature extraction process. Therefore in this paper propose phoneme likelihood error correction improvement system using based on phoneme feature Bhattacharyya distance measurement. Phoneme likelihood is monophone training data phoneme using HMM feature extraction method, similar phoneme is induced recognition able to accurate phoneme using Bhattacharyya distance measurement. They are effective recognition rate improvement. System performance comparison as a result of recognition improve represent 1.2%, 97.91% by Euclidean distance measurement and dynamic time warping(DTW) system.

The Pupil Motion Tracking Based on Active Shape Model Using Feature Weight Vector (특징 가중치 벡터를 적용한 능동 형태 모델 기반의 눈동자 움직임 추적)

  • Kim, Soon-Beak;Lee, Soo-Heum
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • 본 논문은 특징 가중치 벡터를 적용하여 능동형태 모델(Active Shape Model)기반에서 눈동자의 움직임 추적 속도를 향상시키는 방법을 제안한다. 일반적인 능동형태 모델에서는 객체 추적을 위한 PDM 구성을 위해 각 특징점 구성 벡터의 유클리디안 거리의 최소 값으로 Training Set정렬 과정을 수행한다. 이 과정에서 적절하지 못한 샘플 영상으로 인해 안정된 PDM을 구성하지 못하는 문제점이 발생한다. 이러한 문제점을 해결하기 위하여 본 논문에 서는 형태를 구성하는 특징점마다 가중치를 부여하는 벡터를 작성하고, 최소자승근사법으로 최유사 특징점 벡터를 산출하기 위한 선형방정식을 구상하였다. 이로 인해 안정된 PDM을 구성할 수 있었으며, 눈동자 추적실험을 통해 형태적 움직임을 보정하는 실험을 수행하였다. 실험결과 기존의 능동형태 모델에 비해 반복연산의 횟수가 줄어들고, 다양한 형태로 나타나는 눈동자의 움직임 추적에 보다 안정적인 결과를 얻을 수 있었다.

  • PDF