• Title/Summary/Keyword: 유출저감평가

Search Result 287, Processing Time 0.028 seconds

Mapping the Research Landscape of Wastewater Treatment Wetlands: A Bibliometric Analysis and Comprehensive Review (폐수 처리 위한 습지의 연구 환경 매핑: 서지학적 분석 및 종합 검토)

  • C. C. Vispo;N. J. D. G. Reyes;H. S. Choi;M.S. Jeon;L. H. Kim
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.145-158
    • /
    • 2023
  • Constructed wetlands (CWs) are effective technologies for urban wastewater management, utilizing natural physico-chemical and biological processes to remove pollutants. This study employed a bibliometric analysis approach to investigate the progress and future research trends in the field of CWs. A comprehensive review of 100 most-recently published and open-access articles was performed to analyze the performance of CWs in treating wastewater. Spain, China, Italy, and the United States were among the most productive countries in terms of the number of published papers. The most frequently used keywords in publications include water quality (n=19), phytoremediation (n=13), stormwater (n=11), and phosphorus (n=11), suggesting that the efficiency of CWs in improving water quality and removal of nutrients were widely investigated. Among the different types of CWs reviewed, hybrid CWs exhibited the highest removal efficiencies for BOD (88.67%) and TSS (95.67%), whereas VSSF, and HSSF systems also showed high TSS removal efficiencies (83.25%, and 78.83% respectively). VSSF wetland displayed the highest COD removal efficiency (71.82%). Generally, physical processes (e.g., sedimentation, filtration, adsorption) and biological mechanisms (i.e., biodegradation) contributed to the high removal efficiency of TSS, BOD, and COD in CW systems. The hybrid CW system demonstrated highest TN removal efficiency (60.78%) by integrating multiple treatment processes, including aerobic and anaerobic conditions, various vegetation types, and different media configurations, which enhanced microbial activity and allowed for comprehensive nitrogen compound removal. The FWS system showed the highest TP removal efficiency (54.50%) due to combined process of settling sediment-bound phosphorus and plant uptake. Phragmites, Cyperus, Iris, and Typha were commonly used in CWs due to their superior phytoremediation capabilities. The study emphasized the potential of CWs as sustainable alternatives for wastewater management, particularly in urban areas.

A Study on Location Selection for Rainwater Circulation System Elements at a City Level - Focusing on the Application of the Environmental and Ecological Plan of a Development - (도시차원의 빗물순환체계 요소별 입지선정에 관한 연구 - 개발예정지역의 환경생태계획 적용방안을 중심으로 -)

  • Kim, Hyo-Min;Kim, Kwi-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • This study focused on establishing a natural rainwater circulation system using rainwater meant for relatively large urban development projects such as a new town development. In particular, when the location selection techniques for individual elements of a natural rainwater circulation system are developed for the integrated rainwater management, changes in hydrological environment will be minimized and the natural water circulation would be restored to realize the low impact development (LID). In that case, not only the excess will be reduced but water space and green areas in a city would also increase to improve the urban sustainability. First of all, there were five elements selected for the location selection of a rainwater circulation system intended for the integrated rainwater management: rainwater collection, infiltration, filtration, retention and movement spaces. After generating these items, the location selection items and criteria were defined for each of the five elements. For a technique to apply the generated evaluation items and criteria, a grid cell analysis was conducted based m the suitability index theory, and thematic maps were overlapped through suitability assessment of each element and graded based on the suitability index. The priority areas were identified for each element. The developed technique was applied to a site where Gim-cheon Innovation City development is planned to review its feasibility and limitations. The combined score of the overlapped map for each element was separated into five levels: very low, low, moderate, high and very high. Finally, it was concluded that creating a rainwater circulation system conceptual map m the current land use plan based on the outcome of the application would be useful in building a water circulation system at the de1ailed space planning stage after environmental and ecological planning. Furthermore, we use the results of this study as a means for environment-friendly urban planning for sustainable urban development.

A Study on the Environmental Characteristics of Water Quality and Sediments in Suncheon Bay (순천만 수저질 환경특성에 관한 연구)

  • Park, Sangsook;Heo, Sung-sil;Choi, Jeong-min;Woo, Sung-won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.9-10
    • /
    • 2019
  • 순천만은 순천시의 남쪽에 위치하여 여수반도와 고흥반도의 사이에 있는 만 지형 형태로 만 전체를 순천만이라고도 하나, 보통 고흥군반도와 여수반도 사이의 만을 여자만이라 하고 만내부에 위치한 여자도라는 섬의 위쪽으로 순천시의 해안하구에 형성된 지역을 순천만이라 일컫는다. 순천만은 순천시에서 유입되는 동천과 이사천 및 해룡천의 하류에 형성되어 있어서 육지부에서 유입되는 퇴적물과 유기물로 인하여 갯벌과 갈대등이 잘 형성된 습지로서 2003년 12월 31일 해양수산부 갯벌 습지보존지역으로 지정되어 관리되고 있으며, 2004년에는 동북아 두루미 보호 국제네트워크에 가입하였고, 2006년 1월 국내 연안습지로는 최초로 람사르협약에 "Suncheon Bay"로 등록되었으며, 2016년 6월에는 람사르습지로 지정된 국내외적으로 중요한 습지이다. 순천만습지에 형성되어 있는 갯벌($28.0km^2$)은 세계 5대 연안습지 중 하나로서, 넓은 사니질 갯벌과 갈대군락이 잘 발달되어 있는 생태계의 보고(寶庫)이자 소중한 생태자원으로서, 순천시에서는 순천만을 자연생태공원으로 지정하여 보호 관리하고 있으며, 각종 자연학습자료들과 영상물들을 갖춘 생태전시관과 갈대숲 탐방로, 용산전망대, 야생화 정원, 담수습지, 갈대정자, 갯벌관찰대 등 사계절 생태체험을 위한 각종 시설들을 잘 갖춰놓고 많은 관광객의 이용할 수 있도록 하고 있다. 갯벌은 바닷가의 넓은 벌판이란 뜻으로서 삼면이 바다인 우리나라는 갯벌의 전체 면적이 약 $2,500km^2$에 달하는데 여기에는 많은 종류의 다양한 생물들이 살아가고 있으며 어민들의 생계에 지대한 영향을 주고있다. 이러한 갯벌은 퇴적된 입자의 구성에 따라 펄갯벌, 모래갯벌, 혼합갯벌 등으로 구별되는데 이에 따라 갯벌 생태계를 구성하고 있는 생물들의 종류도 바뀌게 된다. 순천만갯벌과 여기에 조성되어 있는 습지환경에 따라 확인되고 있는 수산자원으로는 새꼬막, 꼬막, 눈알고둥, 갯고둥, 비툴이고둥, 돌조개, 접시조개, 새알조개, 가무락조개, 바지락, 우럭, 가재붙이, 방게, 칠게, 농게 등의 저서 생물들과 짱뚱어, 문절망둑 등의 어류가 있으며, 해조류로 우뭇가사리 등이 있고, 인근의 어민들의 어업형태는 꼬막 등 패류의 채취나 종패를 뿌려 일정기간 양성하여 수확하는 양식업, 육상부에서 폐염전 등을 활용한 전어나 새우 등을 양식하는 양식업, 수산물을 직접 손이나 간단한 도구를 이용하여 잡는 맨손 어업 형태가 주를 이루고 있는 것으로 나타나고 있다. 이와 같이 국내외적으로 중요할 뿐만 아니라 인근의 어민들의 생계에도 지대한 영향을 미치고 있는 순천만의 습지는 뻘층이 깊고, 분해성 미생물이 다양하게 서식하여 유기물 분해능력이 뛰어나며, 유기영양분이 풍부하여 우리나라에서 가장 질이 좋은 습지로 평가되고 있으나, 순천시 등 순천만 인근에 거주하고 있는 인간의 활동에 따른 간섭에 많은 영향을 받고 있으며, 이에 따라 끊임없는 생태환경이 변화하고 있어서 순천만의 효율적인 보전 및 지속가능한 이용을 위해서는 생태계에서 가장 기본적인 요소인 수 저질 환경의 지속적이고 체계적인 조사 및 관리가 필요하다. 한편, 오염물질의 70% 이상은 하천이나 강을 통해서 해역으로 유입된다고 알려져 있기 때문에 생태계의 보고(寶庫)라고 알려진 순천만의 지속적인 보존 및 관리를 위해서는 유입수계 하천의 수질현황 및 오염물질의 주요 배출원을 파악하고, 이에 대한 저감대책을 수립할 필요가 있다. 따라서 본 연구는 순천만의 수저질 특성과 여기에 유입되는 하천의 수질환경 현황 및 오염원을 파악함으로써 순천만의 보전을 위한 효율적 관리방안을 제시하는 것을 목적으로 수행되었다. 연구의 결과에 따르면, 순천만의 수질평가지수에 의한 등급(WQI)은 III등급으로 나타나고 있으며, 득량만, 광양만 등에 비해 비교적 높은 유기물 및 T-N, T-P의 농도 분포를 보이고 있는 것으로 조사되었다. 이는 순천만에 유입되는 하수종말처리장의 방류수와 도시하수가 유입되어 그대로 방류되고 있는 해룡천 및 연안에 위치한 어촌으로부터 직접 방류되고 있는 일부 정화조 유출수 등, 다양한 원인에 의한 것으로 판단되며 이들의 관리가 부실할 경우 순천만의 갯벌과 습지의 지속가능한 생태환경유지는 쉽지 않다. 따라서 이를 효율적으로 관리하기 위해서는 순천만 연안의 오염물질 방류를 총량관리로 전환하여 철저히 관리하는 것이 필요할 것으로 판단된다.

  • PDF

Status and Management Strategy of Pesticide Use in Golf Courses in Korea (우리나라 골프장의 농약사용 실태 및 관리방안)

  • Kim, Dongjin;Yoon, Jeongki;Yoo, Jiyoung;Kim, Su-Jung;Yang, Jae E.
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.3
    • /
    • pp.267-277
    • /
    • 2014
  • Objective of this paper is to assess the available data on the pesticide uses and regulations in the golf courses, and provide the nationwide systematic management options. Numbers of golf courses in Korea are rapidly increasing from 2000s and reached at 421 sites by the end of 2011. Accordingly pesticide usage has been increased with years in direct proportion to the increasing number of golf courses. Amounts of pesticide applied in 2011 were 118,669 kg as of an active ingredient and were in the orders of fungicides (54.9%) > insecticides (24.4%) > herbicides (13.3%) > growth regulators (0.1%). Average pesticide usages in 2011 were 280.9 kg per golf course and $5.4kg\;ha^{-1}$. Frequencies of the residual pesticide detections in green and turf were higher than those in fairway and soil, respectively. Residue of highly toxic pesticides was not detected in golf courses. Ministry of Environment in 2010 has developed the 'golf course pesticide monitoring and management system' which is the advanced online registry for kind and amount of pesticides applied in each golf course. This system is intended for monitoring of the pesticide uses and residual levels and protecting the environmental pollution from pesticides in the golf course. In 2009, management of pesticides in the golf courses became the task of Ministry of Environment, being merged from many federal agency and ministries. The protocol for the site-specific best management practices, on which to base results from the risk assessment, should be set for pesticides in the golf to minimize the environmental impacts.

Soil Characteristics of the Saprolite Piled Upland Fields at Highland in Gangwon Province (강원도 고랭지의 석비레 성토지 토양 특성)

  • Park, Chol-Soo;Jung, Yeong-Sang;Joo, Jin-Ho;Yang, Jae-E
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.66-73
    • /
    • 2004
  • As one of the typical farming practices in the sloped upland in Pyeongchang and Hongcheon area, application of piling with coarse saprolite materials has been practiced by farmers for several reasons such as reduction of damage by monocropping, better development of plant roots, and better drainage. However, adverse effect on application of coarse saprolite soil materials to environmental aspects should not be ignored. Therefore, this research was conducted to evaluate the physicochemical properties of coarse saprolite materials in upland fields in Pyeongchang area. According to particle size distribution of coarse saprolite materials, averaged gravel contents for Pyeongchang and Hongcheon county were 16.7 and 25.3%, respectively. There was no significant difference in gravel contents by soil depth, and CV values for each particle size ranged from 20 to 40%, which implied that application of coarse material with similar properties. When we compared CEC values of dressed soil with or without considering gravel content, CEC values decreased as increasing gravel contents. The penetration resistances were 0.04-7.48 MPa at the 0 to 10 cm surface soil, and 0.10 to 8.80 MPa at the depth below 11 cm. The bulk density of the soil was $1.15g\;cm^{-3}$ at the surface soil and 1.29 to $1.35g\;cm^{-3}$ at the soil depth below 10 cm. The organic matter content, cation exchange capacity, and avaliable $P_2O_5$ concentrations of soil in upland where piling with saprolite materials of Pyeongchang area applied were $12.4g\;kg^{-1}$, $7.1cmol_c\;kg^{-1}$, and $526mg\;kg^{-1}$, respectively. Cation exchange capacity was lower than that of averaged Korean upland soil, while available $P_2O_5$ concentration was relatively higher than that of averaged Korean upland, which indicated high input of various fertilizers.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Removal Characteristics of Residual Hydrogen Peroxide (H2O2) according to Application of Peroxone Process in O3/BAC Process (O3/BAC 공정에서 Peroxone 공정 적용에 따른 잔류 과산화수소 제거 특성)

  • Yeom, Hoon-Sik;Son, Hee-Jong;Seo, Chang-Dong;Kim, Sang-Goo;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.889-896
    • /
    • 2013
  • Advanced Oxidation Processes (AOP) have been interested for removing micropollutants in water. Most of water treatment plants (WTPs) located along the lower part of Nakdong River have adopted the $O_3/BAC$ process and have interesting in peroxone process a kind of AOP. This study evaluated the removal characteristics of residual hydrogen peroxide ($H_2O_2$) combining with the biofiltration process in the next BAC process when the hydrogen peroxide is applied for the WTP operating $O_3/BAC$ process. In the experiment, changing the temperature and the concentration of $H_2O_2$ of influent, the biofiltration process showed rapidly dropped the biodegradability when the $H_2O_2$ concentration was increased and lowered water temperature while BAC process maintained relatively stable efficiency. The influent fixed at $20^{\circ}C$ and the concentration of $H_2O_2$ at 300 mg/L was continuously input for 78 hours. Most of the $H_2O_2$ in the influent did not remove at the biofiltration process controlled 5 to 15 minutes EBCT condition after 24~71 hours operating time while BAC process controlled 5 to 15 minutes EBCT showed 38~91% removal efficiency condition after 78 hours operating time. Besides, after 78 hours continuously input experiment, the biomass and activity of attached bacterial on the biofilter and BAC were $6.0{\times}10^4CFU/g$, $0.54mg{\cdot}C/m^3{\cdot}hr$ and $0.4{\times}10^8CFU/g$, $1.42mg{\cdot}C/m^3{\cdot}hr$ respectively. These biomass and activity values were decreased 99% and 72% in biofilter and 68% and 53% in BAC compared with initial condition. The biodegradation rate constant ($k_{bio}$) and half-life ($t_{1/2}$) in BAC were decreased from $1.173min^{-1}$ to $0.183min^{-1}$ and 0.591 min to 3.787 min respectively according to increasing the $H_2O_2$ concentration from 10 mg/L to 300 mg/L at $5^{\circ}C$ water temperature and the $k_{bio}$ and $t_{1/2}$ were $1.510min^{-1}$ to $0.498min^{-1}$ and 0.459 min to 1.392 min at $25^{\circ}C$ water temperature. By increasing the water temperature from $5^{\circ}C$ to $15^{\circ}C$ or $25^{\circ}C$, the $k_{bio}$ were increased 1.1~2.1 times and 1.3~4.4 times. If a water treatment plant operating $O_3/BAC$ process is considering the hydrogen peroxide for the peroxone process, post BAC could effectively decrease the residual $H_2O_2$, moreover, in case of spilling the $H_2O_2$ into the water process line, these spilled $H_2O_2$ concentration can be able to decrease by increasing the EBCT at the BAC process.