• Title/Summary/Keyword: 유출부하

Search Result 547, Processing Time 0.028 seconds

Estimation of Pollutant EMCs and Loadings in Highway Runoff (국내 고속도로 강우 유출수의 EMCs 및 유출 부하량 산정)

  • Kim, Lee-Hyung;Ko, Seok-Oh;Lee, Byung-Sik;Kim, Sunggil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.225-231
    • /
    • 2006
  • The nonpoint source control is based on TPLMS (Total Pollution Load Management System) program. Recently, the Ministry of Environment in Korea has programed TPLMS for 4 major large rivers to improve the water quality in rivers by controling the total pollutant loadings from the watershed area. Usually the urbanization is the main pollutant sources, particularly for nonpoint pollutants, because of high imperviousness and high pollutant mass emissions. The stormwater runoff from urban areas is containing various pollutants such as sediments, metals and toxic chemicals due to human and vehicle activities. Of the various landuses, the highways are highly polluted landuses because of high pollutant accumulation rate by vehicle activities during dry periods. Therefore, this research is achieved to provide pollutant EMCs (Event Mean Concentrations) and mass loadings washed-off from highways during rainfall periods. Five monitoring locations were equipped with an automatic rainfall gage and an flow meter. The results show that the EMC ranges for 95% confidence intervals in highway land use are 45.52-125.76 mg/L for TSS, 52.04-95.48 mg/L for COD, 1.77-4.48 mg/L for TN, 0.29-0.54 mg/L for TP. The ranges of washed- off mass loading are $712.7-2,418.4mg/m^2$ for TSS and $684.1-1,779.6mg/m^2$ for COD.

Runoff Characteristics of Non-Point Source according to Cultivation Activity in River District (하천구역 내 경작활동으로 인한 비점오염물질 유출특성)

  • Ahn, Jae Hwan;Yun, Sang Leen;Kim, Seog Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.7
    • /
    • pp.480-487
    • /
    • 2012
  • The field study was carried out to investigate runoff characteristics of non-point source (NPS) by cultivation activity in river district. Two sites were selected mainly as G region (paddy field, green house), located in Kwangju, Gyeonggi Province, and S region (ordinary field), located in Namyangju, Gyeonggi Province, those belong to Paldang reservoir watershed. The paddy field with water storage capacity showed a slow increase in runoff as rainfall intensity increases. Meanwhile, both green house and ordinary filed revealed a rapid increase. The average BOD runoff concentration of paddy field, green house, and ordinary field was 2.0 mg/L, 2.8 mg/L, 7.9 mg/L, respectively. It indicates that ordinary field shows the highest value in BOD, SS, T-N, and T-P concentration due to the soil loss during rainfall. As a result of runoff load estimation according to the field, a T-N runoff load of paddy field was 1,793.9 kg/year, higher than that of ordinary field. It was estimated that a SS runoff load of ordinary field was 69,704 kg/year and accounts for more than 70% of overall runoff load.

Runoff Characteristics of Nutrients from Agroforest Culture Field (산림농업지대에서 식물영양물질의 유출특성)

  • Kim, Eun-Hyeok;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.331-336
    • /
    • 2014
  • Sediment and nutrient loading caused by the forest to conversion of agricultural lands have led to the deterioration in near water ecosystem. This study was carried out to examine the effects of agroforest culture field and open field culture field on water quality and runoff loading of nutrient. The runoff loading of Tot-N and Tot-P in agroforest culture field were similar to open field culture field. The runoff loading of total suspended solids (TSS) in agroforest culture field and open field culture field were $2,721kg{\pm}196/10a$ and $420{\pm}29kg/10a$ in 2011 and $696kg{\pm}59/10a$ and $463{\pm}36kg/10a$ in 2012, respectively. Our investigation showed that the runoff loading of TSS from agroforest culture field decreased when soil cover and soil stabilization increased. Therefore, protect facility of soil erosion for early alteration of agricultural lands are needed to minimize the soil erosion from agroforest culture field.

Monitoring Pollutants Occurred by Non Point Sources - Rainfall Runoff from Cultivated Lands for a Sweet Potato and a Cherry Tree - (비점오염원에서 발생하는 오염물질 모니터링 - 고구마·벚나무경작지의 강우유출수를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.13-19
    • /
    • 2014
  • The management of non point sources was marked by the need for clean water environments. It was proposed the fundamentals to promote the reasonable land management in this study. We monitored rainfall events at two non point sources with different crop cultivations such as a sweet potato and a cherry tree for three years. Because the most important factor was rainfall, the rainfall runoff and pollutant loads were generated 100% in the case of rainfall ranges with 50 < rainfall (mm). However the frequency of rainfall runoff was interacted with the crop cultivation and soil characteristics in the case of rainfall ranges such as 30 < rainfall (mm) ${\leq}50^a$ and 10 < rainfall (mm) ${\leq}30^b$. The frequency of rainfall runoff was a : 60% and b : 5% in the cherry tree cultivation with growing significantly and pollutant loads were lower than that of the sweet potato cultivation. Meanwhile the frequency of rainfall runoff was a : 60% and b : 5% in the sweet potato cultivation.

Analysis NPS Run-off Characteristics During Rainfall Event in upper Han-river Nae-Rin Cheon watershed (한강 상류 내린천 유역의 강우시 비점오염물질 유출특성 분석)

  • KI Cheol Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.471-471
    • /
    • 2023
  • 소양댐 상류 유역에 위치한 고랭지 밭에서 강우시 많은 양의 탁수가 유입되고 있어 상·하류지역사회에 갈등을 유발하고 하천 환경오염의 주범으로 지목되었다. 이에 환경부는 2007년부터 꾸준히 소양호 유역을 비점오염원 관리지역으로 지정하여 다양한 노력을 기울여왔으나 여전히 소양강 상류 수계의 강우시 흙탕물 발생이 지속적으로 문제가 되고 있다. 특히 고랭지 농업이 활발한 자운지구의 경우 고랭지 밭 경작 이외에도 나대지 상태로 방치되거나, 절삭지 보호가 제대로 이루어지지 않는 등 여러 가지 문제로 토사유출이 심각하게 발생하고 있어 흙탕물 관리가 필요한 실정이다. 이에 본 연구에서는 자운지구를 포함한 내린천 유역을 대상으로 강우유출수 모니터링을 수행하였으며, 모니터링 결과를 바탕으로 강우시 비점오염물질 유출 특성을 분석하였다. 강우유출수 모니터링은 2022년 3월부터 10월 중 총 5회를 수행하였으며, 내린천 유역 내 유량 측정망이 설치되어 있는 4개지점(양지교, 현리교, 하죽천교, 원대교)과 내린천 상류 2개지점(에코빌리지, 새터교) 총 6개 지점에서 강우유출수 모니터링을 실시하였다. 분석된 자료를 바탕으로 각 소유역별 EMC, 오염부하, 단위면적당 오염부하를 산정한 결과 하죽천교와 원대교의 단위면적 당 오염부하가 높게 나타났다. 이는 해당 소유역(내린천 하류)에서 발생한 강우강도가 상류에 비해 높았으며, 하죽천교는 유역내 농경지의 비율이 높고, 원대교는 가파른 경사도의 영향이 큰 것으로 판단된다. 또한, 하죽천교와 원대교 소유역에서 배출된느 흙탕물이 내린천 유역의 하천수질 오염에 상당한 기여를 하고 있는 것으로 나타났으며, 오염 우심 소유역에서 발생하는 흙탕물 저감을 위한 적절한 대책이 마련되어야 할 것으로 판단된다. 본 연구 결과와 같이 장기적인 모니터링을 통해 내린천 유역의 흙탕물 저감 대책 수립을 위한 기초자료로 활용할 수 있을 것으로 기대된다.

  • PDF

5대강의 수질관리를 위한 기초조사연구

  • 이홍근;이종남
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1983.07a
    • /
    • pp.33-44
    • /
    • 1983
  • 주요하천인 낙동강, 금강, 영산강, 섬진강 및 만경강의 5대강 유역에 대한 본 조사 연구의 주요목적은 하천의 유역특성과 수질상태 하천의 자정능력평가와 DO 모형의 설정, 하천의 유량규모와 오염부하량별 수질변화의 추정 및 하천구간별 허용유출 오염부하량별 수질변화의 추정 및 하천구간별 허용유출 오염부하량이 제시등이다. 본 조사는 전국 주요하천 기초조사의 제2차년도에 대한 것이며, 조사연구기간은 1982년 7월 1일부터 동년 12월 20일까지로 이 기간 동안에 실시된 조사연구의 중요성과는 다음과 같다.

  • PDF

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Cherry Tree Plot - (강우시 비점오염원의 오염부하 특성 - 벚나무 재배지를 대상으로 -)

  • Kang, Mee-A;Choi, Byoung-Woo;Yu, Jae-Jeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 2010
  • This study was carried out to produce the characteristics of pollutant loads caused by a cherry tree plot as a nonpoint sources(NPS) unit in agricultural areas. The relationship between rainfall and runoff didn't show a good coefficient with 0.5. Despite precipitation amount was less than 20 mm, runoff occurred with $0.5\;m^3$ because of high rainfall intensity of 8.8 mm/hr. In contrast, runoff was not occurred when precipitation amount was 47.4 mm in one case. In that case the primal effect on runoff was not precipitation amount. Correlation between load of pollutants such as BOD, COD, TN and TP and runoff' volumes showed significantly positive values which were more than r = 0.92 for all pollutants except SS(r = 0.71). SS could be a proper factor for estimating pollutant loads of BOD, COD, TN and TP because of a high correlation more than r = 0.73 between SS load and pollutant loads of BOD, COD, TN and TP. Both Organics and nutrient pollutants could be reduced if we control SS in runoff. The highest concentration of TN was detected in the event which was affected by fertilization activities directly. Therefore fertilization must be considered as a function of impact parameters on TN load in agricultural areas.

Estimation of Flow Loads Characteristics each Sub-watershed for TMDL (TMDL 적용을 위한 소유역별 유출부하 특성 분석)

  • Kim, Joo-Hun;Kim, Kyung-Tak;Lee, Jin-Won
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.443-453
    • /
    • 2011
  • This research aims at suggesting the mitigation measures of decreasing pollution by analyzing land cover characteristics according to subwatershed, and non-pollutant load characteristics occurring in each subwatershed. Mushim-cheon is selected as a research area, and HyGIS-SWAT is used as a water quality model. This research analyzed outflow load characteristics by classifying land cover, which has over 50% classified items, into a city area, a farmland area and a forest area. The result shows that the yearly occurrence load quantity represents a farmland area, a forest area and a city area in order. In subwatershed-2, occurrence load quantity is analyzed by setting up a buffer zone in the center of stream, and by changing a farmland area into a natural grass land. Therefore, a farmland area in a subwatershed changes 36.6% into 27.9% and 15.3% comparing to previous land cover change. In the analysis of sediment loads occurrence quantity and nutritive salt load occurrence quantity in subwatershed-2, sediment loads occurrence quantity decreases 52% to about 47%, and nutritive salt load decreases 49% and 34% in compare with previous change. Hereafter, this research will set up the mitigation measures scenario, and find out which is more effective for the mitigation measures.

Calculation of delivery ratio in Agricultural Catchment using SWAT (SWAT 모형을 이용한 농촌 소하천 유역의 오염부하량 유달율 산정)

  • Kim, Man-Sik;Jung, Seung-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1517-1521
    • /
    • 2007
  • 현재 우리나라의 경우는 국가하천이나 주요 지방하천에 대해서는 환경부 등 지방자치단체에서 측정망을 통해서 꾸준히 수질자료가 축적되고 있으나 농촌유역의 소하천 수질개선 사업을 위해 필요한 수질관련 자료는 거의 없다. 최근에 와서 수질 정보 시스템의 개발 및 수질 오염 모니터링을 위한 측정망의 확충 등과 같은 관리체계의 개선에 대한 노력이 활발히 진행되고 있으나 이에 소요되는 재원문제 등으로 채취빈도나 분석항목이 크게 미흡하다. 특히 조사가 유역이 크고 복잡한 복합유역을 대상으로 하기 때문에 자연히 오염물질 유출에 미치는 변수가 너무 많이 개입되므로 해석자체가 특정유역에 제한되기 마련이다. 따라서 본 과업에서는 농촌 소하천 유역을 대상으로 실측 수질-유량 상관분석을 통한 수문모형을 구축하였고 국립환경과학원에서 수계오염총량관리기술지침(2004)에서 제시한 토지계의 발생부하 원단위를 이용하여 SWAT 모형을 보정하였다. 보정된 모형을 이용하여 소유역별 1년(12개월) 오염물질 부하량 및 강우유출량을 산정하였으며, 현장실측을 통해 산정된 유달부하량과 모의 부하량과의 비를 이용한 유달율을 산정하였다.

  • PDF

Impacts of Nitrate in Base Flow Discharge on Surface Water Quality (질산성 질소 기저유출이 지표수 수질에 미치는 영향)

  • Kim, Geonha;Lee, Hosik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.105-109
    • /
    • 2009
  • It is a well known fact that baseflow discharge of rainfall runoff impacts on water quality of surface water significantly. In this paper, impacts of nitrate discharged as base flow on stream water quality were studied by using a software, PULSE from USGS to calculate monthly ground water discharge from hydrograph. We used water quality and flow rate data for Ghapcehon2 site in Daejeon city for year 2005 as well as ground water quality data in the watershed acquired from government agencies. Agricultural and forestry land use are dominant for upstream of Ghapcheon2 in the watershed. Base flow contributes about 85~95% of stream flows during spring and fall while 25~38% of stream flow was induced by base flow during summer and winter. Monthly nitrate loading discharged as base flow for Ghapcheon2 was estimated by using averaged nitrate concentration of groundwater in the watershed. Nitrate loading induced by base flow at Ghapcheon2 was estimated as 5.4 ton of $NO_{3}{^-}-N/km^{2}$, which is about 60% of nitrate loading of surface water, 9.2 ton of $NO_{3}{^-}-N/km^{2}$. Seasonal variation of nitrate concentration of base flow was estimated by dividing monthly nitrate loading by monthly base flow discharge. Nitrate concentration of groundwater was increasing from rainy season. From this study, it can be understood that ground water quality monitoring is important for the proper manage of surface water quality.