• Title/Summary/Keyword: 유출량저감

Search Result 486, Processing Time 0.02 seconds

Optimization of Operation and Backwashing Condition for an Upflow Stormwater Filtration System Utilizing Ceramic Media (세라믹 여재를 활용한 상향류식 여과형 비점오염저감시설의 최적 운전 및 역세척 조건)

  • Hwang, Yuhoon;Seo, Younggyo;Kim, Hyowon;Roh, Kunwan;Shin, Hyunsang;Kim, Dogun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.478-488
    • /
    • 2017
  • Stormwater filtration is widely used for the urban runoff treatment. However, intensive maintenance and lack of information about the performance have resulted in an increased need of proper evaluation. In this study, the performance of an upflow stormwater runoff filtration system, consisting of a supporting unit and a filtration unit filled with a ceramic media, was investigated. The maximum head loss increase was about 3 cm under the suspended solid (SS) load of $30kg/m^2$ and the SS removal was more than 96%, when the filtration velocity was 20-40 m/h. The head loss and the porosity of the media can successfully be described by a power model. It was confirmed that the a significant amount of SS can effectively be removed at supporting unit, minimizing SS load to the filter media bed. Several backwashing strategies have been tested to establish the optimum condition. It was found that the stagnant water discharge is important to minimize the SS release immediately after backwashing. Also, the filter bed loaded with $400-450kg/m^2$ SS can almost completely be washed to reduce the head loss to the that of empty bed. The results in this study indicate that the upflow ceramic media filter is an excellent alternative to stormwater treatment, with high SS removal and long lifespan.

Effect of Fluidized Bed Powdered Activated Carbon Impregnated by Iron Oxide Nano-particles on Enhanced Operation and NOM Removal of MF Membrane System (산화철 나노입자 표면개질 분말활성탄 유동층에 의한 MF 막 분리 공정의 운전 및 NOM 제거 효율 향상)

  • Kim, Sung-Su;Seo, Gyu-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.332-339
    • /
    • 2011
  • Effects of powdered activated carbon impregnated by iron oxide nano particle (Impregnated PAC) on the microfiltration (MF) membrane system performance in NOM removal from water were investigated in this study. A fluidized bed column was employed as a pretreatment of MF membrane process. The Impregnated PAC bed was stably maintained at an upflow rate of 63 m/d without leakage of the Impregnated PAC particles, which provided a contact time of 29 minutes. A magnetic ring at the upper part of the column could effectively hold the overflowing discrete particles. The Impregnated PAC column demonstrated a significant enhancement in the MF membrane performance in terms of fouling prevention and natural organic matter (NOM) removal. Trans-membrane pressure of the MF membrane increased to 41 kPa in 98 hours of operation, while it could be maintained at 12 kPa with the Impregnated PAC pretreatment. Removal of NOM determined by dissolved organic carbon and UV254 was also enhanced from 46% and 51% to 75% and 84%, respectively, by the pretreatment. It was found that the Impregnated PAC effectively removed a wide range of different molecular-sized organic compounds from size exclusion analysis.

Estimation of Stream Water Quality Changes Brought by a New Town Development (신도시 개발 후 도시하천의 장래수질 평가)

  • Park, Ji-Young;Lim, Hyun-Man;Yoon, Young-Han;Jung, Jin-Hong;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Water pollution problems of urban rivers due to the urbanization and industrialization have been the subject of public attention. In particular, considering the fact that the characteristics of water cycle of each basin change dramatically through the development of new towns, a large number of concerns about future water quality have been raised. However, reasonable measures to predict future water quality quantitatively have not been presented by this moment. In this study, by the linkage of annual unit load generation based on long-term monitoring results of the ministry of environment (MOE) to a semi-distributed rainfall runoff model, SWMM (Storm Water Management Model), we proposed a new methodology to estimate future water quality macroscopically and testified it to verify its applicability for the estimation of future water quality of a small watershed at G new town. As a result of the estimation using Y-EMC (Yearly based Event Mean Concentration), future water quality were simulated as BOD 18.7, T-N 16.1 and T-P 0.85 mg/L respectively which could not achieve the grade III of domestic river life guidance and these criteria could be satisfied by the reduction of domestic wastewater discharge load by over 80%. The results of this study are shown to be utilized for one of basic tools to estimate and manage water quality of urban rivers in the course of new town developments.

Determination of EMCs for Rainfall Ranges from Transportation Landuses (교통관련 토지이용에서의 강우계급별 EMC 산정)

  • Lee, So-Young;Maniquiz, Marla C.;Choi, Ji-Yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.11 no.2
    • /
    • pp.67-76
    • /
    • 2009
  • The contribution of pollutant loadings from non-point source (NPS) to the four major rivers in Korea exceeded 22~37 % of the total loadings in 2004 and is expected to reach 60 % in 2020. Most of NPS loadings are coming from urban areas, especially from paved areas. Because of high imperviousness rate, many types of NPS pollutant are accumulating on the surface during dry periods. The accumulated pollutants are wash-off during a storm and highly degrading the water quality of receiving water bodies. For this reason, the Korean Ministry of Environment (MOE) developed the Total Maximum Daily Load (TMDL) program to protect the water quality by managing the point source and NPS loadings. NPS has high uncertainties during a storm because of the characteristics of rainfall and watershed areas. The rainfall characteristics can affect on event mean concentrations (EMCs), mass loadings, flow rate, etc. Therefore, this research was performed to determine EMCs for rainfall ranges from transportation landuses such as road and parking lot. Two sites were monitored over 45 storm events during the 2006/06 through 2008/10 storm seasons. Mean TSS EMCs decrease as rainfall ranges increase and highest at less than 10mm rainfall. The results of this study can be used to determine the efficient scale of BMP facility considering specific rainfall range.

  • PDF

Comparison of heavy metal uptake of LID and roadside plants (도로변 및 LID 시설 식재 식물의 중금속 축적량 비교)

  • Lee, YooKyung;Choi, Hyeseon;Reyes, Nash Jett;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.44-53
    • /
    • 2021
  • Urban stormwater runoff contains heavy metals that accumulate in on-site treatment systems, thus resulting to facility deterioration and maintenance problems. In order to resolve these problems, low impact development (LID) technologies that promote natural materials circulation are widely used. LID facilities are capable of treating heavy metals in the runoff by means of plant uptake; however, the uptake or phytoremediation capabilities of plants have not been studied extensively, making it difficult to select the most suitable plant species for a certain LID design. This study investigated the vegetative components of an LID facility, roadside plants, and plants in landscape areas with different heavy metal exposure and frequency to determine the uptake capabilities of different plant species. The plants harvested inside the LID facilities and roadsides with high vehicular traffic exhibited greater heavy metal concentrations in their tissues as compared with the plants in landscape areas. Generally, the accumulation of heavy metals in the plant tissues were found to be influenced by the environmental characteristics (i.e. influent water quality, air pollution level, etc.). Dianthus, Metasequoia, Rhododendron lateritium, and Mugwort were found to be effective in removing Zn in the urban stormwater runoff. Additionally, Dianthus, Metasequoia, Mugwort, and Ginkgo Biloba exhibited excellent removal of Cu. Cherry Tree, Metasequoia, and mugwort efficiently removed Pb, whereas Dianthus was also found to be effective in treating As, Cr, and Cd in stormwater. Overall, different plant species showed varying heavy metal uptake capabilities. The results of this study can be used as an effective tool in selecting suitable plant species for removing heavy metals in the runoff from different land use types.

Increased Available Phosphate by Shell Meal Fertilizer Application in Upland Soil (밭 토양에서 패화석비료 시용에 따른 유효인산의 증대)

  • Lee, Chang-Hoon;Lee, Ju-Young;Ha, Byung-Hyun;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • Previous studies showed that shell meal fertilizer from the oyster farming industry could be a potential inorganic soil amendment to increase Chinese cabbage productivity and to restore the soil nutrient balance in upland soil (Lee et al., 2004). Herein, shell meal fertilizer was applied at rates of 0, 4, 8, 12, and $16Mg\;ha^{-1}$ to upland soil (Pyeontaeg series, Fine silty, Typic Endoaquepts) for Chinese cabbage cultivation. We found available phosphate increased significantly with shell meal fertilizer application, due to high content of phosphate ($1.5g\;P_2O_5\;kg^{-1}$) in the applied shell meal fertilizer. In addition, high pH of shell meal fertilizer contributed to increase available phosphate content by neutralization of acidic soil. Total and residual P contents increased significantly with increasing shell meal fertilizer application, but we could not find any tendency in organic and inorganic P fraction. Of extractable P fraction, water-soluble phosphorus (W-P) and calcium-bound P (Ca-P) contents increased significantly with increasing application level. By contrast, aluminum and iron-bound P (Al-P and Fe-P) decreased slightly with shell meal application. The present experiment indicated that shell meal fertilizer had a positive benefit on increasing available phosphate content in arable soil. And so the increased available phosphate by shell meal fertilizer may decrease phosphate application level and then reduce phosphorus loss in arable soil.

Development of Continuous Clean Bioprocess for Kasugamycin Production (Kasugamycin 생산을 위한 연속 청정생물공정 개발)

  • Kim, Chang Joon;Park, Sun Ok;Chang, Yong Keun;Chun, Gie-Taek;Lee, Jong-Dae;Kim, Sangyong
    • Clean Technology
    • /
    • v.4 no.1
    • /
    • pp.45-59
    • /
    • 1998
  • Continuous immobilized-cell culture was carried out for the production of kasugamycin, a secondary metabolite by a filamentous bacteria, Streptomyces kasugaensis, with an intention of reducing waste generation. A sporulation medium was developed for production of bulk amounts of spores, and the spores were entrapped into celite biosupports for immobilization. It was possible to effectively keep the immobilized-cells inside the reactor during the continuous culture by an efficient immobilized cell separator of decantor type on the outlet of the fermentor. Using this continuous immobilized-cell fermentor system, we investigated the effects of feed substrate and phosphate concentrations on kasugamycin production and chemical oxygen demand(COD). Comparing with the conventional suspended-cell batch culture, the kasugamycin productivity was observed to increase by 2.5 times, whereas COD per unit kasugamycin production decreased by 2.3 times in the continuous immobilized-cell culture. Based on these results, the continuous immobilized-cell system was considered to be a cleaner bioprocess than the conventional batch suspended-cell system.

  • PDF

Analysis of Water Cycle Effect according to Application of LID Techniques (LID 기법 적용에 따른 물순환 효과분석)

  • Lee, Jungmin;Lee, Yun;Choi, Jongsoo
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.411-421
    • /
    • 2014
  • At present, the development in rainwater management approach is still insufficient due to the numerous adverse effects of urbanization. Storm water management is being developed to restore the natural state of water cycle undergoing several processes which were hindered such as infiltration and evapotranspiration. Low Impact Development (LID) was established in order to reduce the negative effects of urbanization to our environment. These developments can be used to respond to the effects of climate change such as heat island phenomenon. The effects of the development of new town in the district plan with application of LID facilities were studied and reported. Typically, LID facilities were applied in small scale development and were rarely used in large-scale development. Most of studies, however, did not assessment the effects of large-scale development projects with LID application to the natural water cycle. This study was conducted to simulate the urban hydrologic cycle simulation on Asan-Tangjeong in Korea. This study may be used in urban hydrologic cycle simulation and establishment of an urban water management plan in the future. Lastly, this study generated a model using the recently updated SWMM5 which determined the hydrologic cycle simulation after installation of LID facilities.

Prevention of Soil Erosion in Sloped Upland of Highland Using Landscape crop Chrysanthemum zawadskii (경관작물 구절초의 고랭지 경사지밭 토양유실 경감 효과)

  • Kim, Su Jeong;Sohn, Hwang Bae;Kim, Yul Ho;Hong, Su Young;Nam, Jung Hwan;Lee, Jong Nam;Chang, Dong Chil;Suh, Jong Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.51-51
    • /
    • 2019
  • 고랭지(해발고도 400m 이상)는 전국 밭 면적의 24.7%을 차지하고 있고 경사도가 15도 이상인 지역이 58.7%인 41,812ha에 달한다. 고랭지 농업은 주로 해발고도가 높은 산지의 경사지에서 이루어지고 있고, 대부분 작물 재배기간이 5월부터 9월까지 약 5개월 정도로 짧아, 나머지 7개월은 토양 피복이 이루어지지 않은 상태로 있어 토양유실 가능성이 높다. 이러한 문제점을 개선하기 위해 본 연구에서 경관성이 높은 구절초를 식재하여 토양유실 저감 효과를 구명하였다. 고랭지 경사도 55도 라이시미터(Lysimeter)에서 가로 1.2m에 세로 1.8m의 규격으로 시험을 수행하였다. 관행구로 나지(Control, TC) 대비 식재 당시 피복정도에 따라, 피복율 40%는 T1, 피복율 70%는 T2로 하여 총 3처리를 두었다. 구절초의 개화기(10월 1일) 피복율을 조사한 결과 대조구인 나지상태는 0%의 피복율인데 이에 반해 구절초 식재 처리구는 57~80%로 경사지 토양을 피복시키는 효과가 가장 높은 경향을 보였다. 경관작물인 구절초를 식재할 경우 나지 TC를 기준으로 유출량이 65~71%, 토양유실이 87~99% 감소되어 강우에 의한 토양유실 경감에 매우 효과적이었다. 또한, 유거수 탁도 저감 효과성이 뛰어났다. 따라서, 고랭지 경사지에 영년생 자원식물 중 경관성이 뛰어난 구절초를 식재함으로서 경사지 토양유실을 경감시킬 수 있고, 부가가치가 높은 고소득작물로 활용 가치가 높다.

  • PDF

Spatio-temporal Variation Analysis of Physico-chemical Water Quality in the Yeongsan-River Watershed (영산강 수계의 이화학적 수질에 관한 시공간적 변이 분석)

  • Kang, Sun-Ah;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.73-84
    • /
    • 2006
  • The objective of this study was to analyze long-term temporal trends of water chemistry and spatial heterogeneity for 10 sampling sites of the Yeongsan River watershed using water quality dataset during 1995 to 2004 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of biological oxygen demand (BOD), chemical oxygen demand (COD), conductivity, dissolved oxygen (Do), total phosphorus (TP), total nitrogen (TN) and total suspended solids (TSS), largely varied depending on the sampling sites, seasons and years. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summmer monsoon rain. Conductivity, used as a key indicator for a ionic dilution during rainy season, and nutrients of TN and TP had an inverse function of precipitation (absolute r values> 0.32, P< 0.01, n= 119), whereas BOD and COD had no significant relations(P> 0.05, n= 119) with rainfall. Minimum values in conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of total suspended solids (TSS) occurred during the period of summer monsoon. BOD values varied with seasons and the values was closely associated (r=0.592: P< 0.01) with COD, while variations of TN were had high correlations (r=0.529 : P< 0.01) with TP. Seasonal fluctuations of DO showed that maximum values were in the cold winter season and minimum values were in the summer seasons, indicating an inverse relation with water temperature. The spatial trend analyses of TP, TN, BOD, COD and TSS, except for conductivity, showed that the values were greater in the mid-river reach than in the headwater and down-river reaches. Conductivity was greater in the down-river sites than any other sites. Overall data of BOD, COD, and nutrients (TN, TP) showed that water quality was worst in the Site 4, compared to those of others sites. This was due to continuous effluents from the wastewater treatment plants within the urban area of Gwangju city. Based on the overall dataset, efficient water quality management is required in the urban area for better water quality.