• Title/Summary/Keyword: 유체 저항

Search Result 365, Processing Time 0.025 seconds

Characteristics of Flow-Induced Noise in the Suction Nozzle of a Vacuum Cleaner with a Double-Blade Fan (이중 블레이드 팬이 장착된 진공청소기 브러쉬의 유동소음 특성)

  • Park, I-Sun;Sohn, Chae-Hoon;Oh, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.205-213
    • /
    • 2011
  • The characteristics of noise generation in the suction nozzle of a vacuum cleaner are analyzed numerically and experimentally. First, the flow resistance induced by each element in the suction nozzle of a vacuum cleaner with a double-blade rotary fan is investigated numerically and its relation with flow-induced noise and suction performance is examined in an anechoic room. The flow resistance and vorticity in the suction nozzle are calculated, and it is found that they are closely related to flow-induced noise and that the upper limit of noise reduction is only 4 dBA. This upper limit can be achieved by changing the design of the brush nozzle. Two methods for noise reduction by enlargement of flow-inlet area and by optimization of the number of blades are tested. Finally, the effects of each method are verified experimentally.

A Numerical Study on Resistance Performance According to the Draft CFRP Composite Canoe (탄소섬유를 적용한 카누의 흘수에 따른 저항성능에 대한 수치적 연구)

  • Kim, Ju Yeol;Kim, Junho;Joung, Jae Ha;Lim, Jongkil;Ra, Inkang;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.876-883
    • /
    • 2016
  • In this study, we selected CFRP to construct a canoe hull. A ship design was made using a commercial ship design program, SOLIDWORKS, and a flow analysis of the canoe on a free surface was calculated using STAR-CCM+. A flow field and waveform were obtained in this way. These results were used to check the resistant performance of the canoe. Results showed that if the draft is 0.09 m, it is safe to run at less than 4 m/s, and if draft is 0.24 m, it is safe to run at less than 2 m/s. Moreover, it was confirmed that those speeds can be made by two adults. The developed canoe, which is 20 % lighter in comparison with conventional FRP models, was briefly introduced in this paper.

A Study on Predicting Ship Resistance Performance due to Surface Roughness Using CFD (CFD를 이용한 표면 거칠기에 따른 선박의 저항 성능 추정에 관한 연구)

  • Seok, Jun;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.400-409
    • /
    • 2016
  • In recent, shipping companies have made an enormous effort to improve the operation of vessel in various approaches, due to recession of shipping market and increasing competition among shipping companies. One of important parameters for improving the efficiency of vessel is the resistance performance that consist of friction and residual resistance. Especially, it is recognized that the friction resistance tends to be affected by conditions of vessel’s surface and occupies approximately 70~90% of the total resistance for slow speed ships. In general, the surface of vessel is covered with various type of paint to reduce fouling and corrosion. As time goes by, however, it is so hull roughness would be increased by fouling over the wetted surface that anti-fouling paints, such as CDP(Controlled Depletion Paint), Tin-Free SPC(Self Polishing Co-polymer) or Foul Release, are applied evenly on the hull surface. Nevertheless, these anti-fouling paints could not prevent fouling absolutely. A fundamental study on evaluating ship resistance performance variation due to hull roughness has been performed using a commercial software, Star-CCM+, which solves the continuity and Navier-Stokes equations for incompressible and viscous flow. The results of present simulation for plate are compared with some experimental data available and the effect of surface roughness to ship resistance performance is discussed.

Theoretical Analysis on the Heat Transport Limitation of a Sintered Metal Wick Heat Pipe (소결윅 히트파이프의 열수송 한계에 관한 이론적 해석)

  • Kim Keun-Bae;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.16-25
    • /
    • 2004
  • Theoretical analysis for predicting the heat transport limitation of a copper powder sintered wick heat pipe was performed. The heat pipe diameter was 8mm and water was used for working fluid. The particle diameter was classified by 5 different meshes, and each capillary pressures and heat transport limitations. thermal resistances were analyzed according to the operating temperatures, wick thicknesses and inclination angles, based on the effective capillary radius($r_c$), porosity($\varepsilon$), Permeability (K). The wick capillary limitation was increased according as the particle diameter and the wick thickness and the operating temperature were increased. As the porosity and the capillary radius were larger. then the heat transport limitation was higher. The thermal resistance was greatly increased according as the wick thickness was increased.

Metal Foam Flow Field Effect on PEMFC Performance (금속 폼 유로가 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.442-448
    • /
    • 2021
  • Flow field is an important parameter for polymer electrolyte membrane fuel cell (PEMFC) performance to have an effect on the reactant supply, heat and water diffusion, and contact resistance. In this study, PEMFC performance was investigated using Cu foam flow field at the cathode of 25 cm2 unit cell. Polarization curve and electrochemical impedance spectroscopy were performed at different pressure and relative humidity conditions. The Cu foam showed lower cell performance than that of serpentine type due to its high ohmic resistance, but lower activation and concentration loss due to the even reactant distribution of porous structure. Cu foam has the advantage of effective water transport because of its hydrophobicity. However, it showed low membrane hydration at low humidity condition. The metal foam flow field could improve fuel cell performance with a uniform pressure distribution and effective water management, so future research on the properties of metal foam should be conducted to reduce electrical resistance of bipolar plate.

A Study on the Effect of Improving Permeability by Injecting a Soil Remediation Agent in the In-situ Remediation Method Using Plasma Blasting, Pneumatic Fracturing, and Vacuum Suction Method (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화제 주입에 따른 투수성 개선 연구)

  • Geun-Chun Lee;Jae-Yong Song;Cha-Won Kang;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.371-388
    • /
    • 2023
  • A stratum with a complex composition and a distributed low-permeability soil layer is difficult to remediate quickly because the soil remediation does not proceed easily. For efficient purification, the permeability should be improved and the soil remediation agent (H2O2) should be injected into the contaminated section to make sufficient contact with the TPH (Total petroleum hydrocarbons). This study analyzed a method for crack formation and effective delivery of the soil remediation agent based on pneumatic fracturing, plasma blasting, and vacuum suction (the PPV method) and compared its improvement effect relative to chemical oxidation. A demonstration test confirmed the effective delivery of the soil remediation agent to a site contaminated with TPH. The injection amount and injection time were monitored to calculate the delivery characteristics and the range of influence, and electrical resistivity surveying qualitatively confirmed changes in the underground environment. Permeability tests also evaluated and compared the permeability changes for each method. The amount of soil remediation agent injected was increased by about 4.74 to 7.48 times in the experimental group (PPV method) compared with the control group (chemical oxidation); the PPV method allowed injection rates per unit time (L/min) about 5.00 to 7.54 times quicker than the control method. Electrical resistivity measurements assessed that in the PPV method, the diffusion of H2O22 and other fluids to the surface soil layer reduced the low resistivity change ratio: the horizontal change ratio between the injection well and the extraction well decreased the resistivity by about 1.12 to 2.38 times. Quantitative evaluation of hydraulic conductivity at the end of the test found that the control group had 21.1% of the original hydraulic conductivity and the experimental group retained 81.3% of the initial value, close to the initial permeability coefficient. Calculated radii of influence based on the survey results showed that the results of the PPV method were improved by 220% on average compared with those of the control group.

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Model Test on the High Performance of the Midwater Pair Trawl Net (쌍끌이중층망의 전개성능 향상을 위한 모형실험)

  • 권병국
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.4
    • /
    • pp.340-349
    • /
    • 1995
  • There are several problems in a fishing by the midwater pair trawl net which is used in Denmark; steeply decreasing of the net height with the towing speed increasing, the larger volume of the fishing gear in comparison with the size of the trawler, and catching of a float in a mesh, etc. To prevent steeply decreasing of the net height with the towing speed increasing and catching of a float in a mesh, it is sometimes more useful to use the kite instead of floats. This paper describes the hydrodynamic drag and the opening efficiency of the midwater pair trawl net and the midwater kite pair trawl net obtained by the model test in the circulation water channel. The results can be summarized as follows; 1. The hydrodynamic drag of the midwater kite pair trawl net is about 0.7 times smaller than that of the midwater pair trawl net. 2. The net height, mouth area and filtering volume of the midwater kite pair trawl net are smaller then those of the midwater pair trawl net when the towing speed is below 2.5knots, almost the same at 2.7knots, and are larger over 3.0knots. The net width of the midwater kite pair trawl net is same as that of the midwater pair trawl net. 3. The shapes of net mouth of both net are an oval steeply flatted with the towing speed increasing. The filtering volume of the midwater kite pair trawl net is larger then that of the midwater pair trawl net by 3% at 3.0knots, 11% at 4.0knots, and 16% at 5.0knots respectively.

  • PDF

A numerical study on the aerodynamic characteristics of a variable geometry throttle valve(VGTV) system controlling air-flow rate (유량 제어장치인 가변스로틀밸브의 기하학적 형상변화에 따른 공기역학 특성분석 연구)

  • Cho, Hyun-Sung;Kim, Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.378-383
    • /
    • 2013
  • A butterfly throttle valve has been used to control the brake power of an SI engine by controlling the mass flow-rate of intake air in the induction system. However, the valve has a serious effect on the volumetric efficiency of the engine due to the pressure resistance in the induction system. In this study, a new intake air controlling valve named "Variable Geometry Throttle Valve(VGTV)" is proposed to minimize the pressure resistance in the intake system of an SI engine. The design concept of VGTV is on the application of a venturi nozzle in the air flow path. Instead of change of the butterfly valve angle in the airflow field, the throat width of the VGTV valve is varied with the operating condition of an SI engine. In this numerical study, CFD(computational fluid dynamics) simulation technique was incorporated to have an aerodynamics performance analysis of the two air flow controlling systems; butterfly valve and VGTV and compared the results to know which system has lower pressure resistance in the air intake system. From the result, it was found that VGTV has lower pressure resistance than the butterfly valve. Especially VGTV is effective on the low and medium load operating condition of an SI engine. The averaged pressure resistance of VGTV is about 49.0% lower than the value of the conventional butterfly throttle valve.

The Comparison on Resistance Performance and Running Attitude of Asymmetric Catamaran Changing Angle of Inclination of Tunnel Stern Exit Region (비대칭 고속 쌍동선의 선미터널 출구영역의 경사각 변화에 따른 저항성능 및 항주자세 분석)

  • Kim, Sang-Won;Seo, Kwang-Cheol;Cho, Dea-Hwan;Kim, Byung-Jae;Lee, Gyeong-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.232-233
    • /
    • 2017
  • In this research, tunnel stern was applied on the asymmetric high-speed catamaran to evaluate vessel's hydrodynamic performance by numerical method, and the tunnel stern types are distinguished by angle of inclination of tunnel exit region into 3cases ($0^{\circ}$, $3^{\circ}$ and $6^{\circ}$). Consequently, it is confirmed that the total resistances of tunnel stern which have $0^{\circ}$ of inclination are lower about 4.8-17.9% than the bare hull in the wide speed range, but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are higher than bare hull about 5-14% and 5-29%, respectively. On the other hand, trim angles of $0^{\circ}$ of inclination tunnel stern show similar trend with those of bare hull in whole ranges of FnV but those of $3^{\circ}$ and $6^{\circ}$ of inclination tunnel stern are stabilized and declined respectively after FnV=1.54. These phenomena indicated that increasing angle of inclination of tunnel exit region had negative influence on resistance performance, however, it could make vessel's operation performance better than bare hull.

  • PDF