• Title/Summary/Keyword: 유체의 흐름

Search Result 618, Processing Time 0.027 seconds

Study on the Improvement of Stow Net Fishing Technique and the Enlargement of Fishing Ground to the Distant Waters - 1 . Model Experiment of the Net - (안강망어법의 개량과 어장의 원해로의 확대를 위한 연구 - 1 . 어구의 모형실험 -)

  • Lee, Byoung-Gee;Kim, Jin-Kun;Lee, Ju-Hee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.2
    • /
    • pp.55-64
    • /
    • 1988
  • Stow nets have widely been used in the western sea of Korea from the olden age. The original structure of a stow net is a large square-sectional bag net made of 4 netting panels, and the front fringes of top and bottom panels are connected to the top and bottom beams respectively. Wire ropes, which is originated from the holding anchor are gradually forked and biforked, and finally 4 pieces of wire rope (biforked pendants) are jointed to each beam. Much convenience caused by long and heavy beams were problemed, then some studies have been carried out to improve the net since 1930's. The most effective improvement were achieved in 1980 by Mr. Han and his colleagues. The key point of improvement was that the beams were removed and the belt shaped shearing device made by canvas was attached to the side panels, the head rope and ground rope to the front fringe of top and bottom panel, and biforked pendants are joined to the shearing device. Even though this is the epoch-making improvement of a stow net, the further study should be required to find out more effective method. The authors carried out a model experiment on the stow net to determine the vertical and horizontal opening of a net mouth, and also examine the front, top and side-view configuration of the net. The model net was constructed depending on the Similarity Law of Fishing Gear in 1/10 and 1/20 scale and set against to the current at shallow and speedy flowing channel. The vertical and horizontal openings were determined by using scaled bamboo poles, and the configuration was observed by using specially prepared observation platform and underwater observation glass, and also photographed by using specially prepared underwater photographic equipment. The results obtained can be summarized as follows: 1. The opening height and width of the shearing device varied in accordance with the relative length of the biforked pendants. Considering the height and width of shearing device in 6 cases of the arrangement system of biforked pendants, the best result was obtained in the case that the 2nd, 3rd and 4th pendents from the bottom-most was 5%, 9% and 4% longer than that. 2. On the top-view configuration the excessive deformation of head rope and ground rope were observed. In the actual net, 54m long head rope and ground rope were attached to the front fringe of top and bottom panels so that the head rope may be lifted to make the net mouth open highly. But actually the head rope and the ground rope are streamed backward without any lift, and also the netting followed the ropes were deformed until the 2/5 in the whole length of the net. This deformation may be guessed to disturb the entrance of fish school into the net and also caused the net to get caught by obstacles in the sea bed and to be broken largely. 3. Hydrodynamic resistance R of the actual net may be deduced as R(kg)=29.2$\times$103 v1.65. It is also expressed as R(kg)=5.9$\times$d/l$\times$ab v1.65. depending on the formula deduced by Koyama to estimate the resistance of trawl nets, where d/l denote the ratio between diameter of netting twine and length of mesh leg in every part of side panel, a and b, the stretched circumference of the mouth and the stretched length of the net, respectively.

  • PDF

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Simulation of Detailed Wind Flow over a Locally Heated Mountain Area Using a Computational Fluid Dynamics Model, CFD_NIMR_SNU - a fire case at Mt. Hwawang - (계산유체역학모형 CFD_NIMR_SNU를 이용한 국지적으로 가열된 산악지역의 상세 바람 흐름 모사 - 화왕산 산불 사례 -)

  • Koo, Hae-Jung;Choi, Young-Jean;Kim, Kyu-Rang;Byon, Jae-Young
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.192-205
    • /
    • 2009
  • The unexpected wind over the Mt. Hwawang on 9 February 2009 was deadly when many spectators were watching a traditional event to burn dried grasses and the fire went out of control due to the wind. We analyzed the fatal wind based on wind flow simulations over a digitized complex terrain of the mountain with a localized heating area using a three dimensional computational fluid dynamics model, CFD_NIMR_SNU (Computational Fluid Dynamics_National Institute of Meteorological Research_Seoul National University). Three levels of fire intensity were simulated: no fire, $300^{\circ}C$ and $600^{\circ}C$ of surface temperature at the site on fire. The surface heat accelerated vertical wind speed by as much as $0.7\;m\;s^{-1}$ (for $300^{\circ}C$) and $1.1\;m\;s^{-1}$ (for $600^{\circ}C$) at the center of the fire. Turbulent kinetic energy was increased by the heat itself and by the increased mechanical force, which in turn was generated by the thermal convection. The heating together with the complex terrain and strong boundary wind induced the unexpected high wind conditions with turbulence at the mountain. The CFD_NIMR_SNU model provided valuable analysis data to understand the consequences of the fatal mountain fire. It is suggested that the place of fire was calm at the time of the fire setting due to the elevated terrain of the windward side. The suppression of wind was easily reversed when there was fire, which caused updraft of hot air by the fire and the strong boundary wind. The strong boundary wind in conjunction with the fire event caused the strong turbulence, resulting in many fire casualties. The model can be utilized in turbulence forecasting over a small area due to surface fire in conjunction with a mesoscale weather model to help fire prevention at the field.

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.