• Title/Summary/Keyword: 유체유발하중

Search Result 20, Processing Time 0.022 seconds

Flow-induced Vibration Time Response Analysis of Loosely Supported Multi-Span Tube using Commercial FEA Code (지지점 간극을 갖는 다점지지 유연관의 유동하중에 의한 시간응답 이력해석과 상용유한요소 해석코드의 적용)

  • Lee, Kang Hee;Kang, Heung Seok;Shin, Chang Hwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.11 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • Time domain response analysis for vibro-impact nonlinear behavior of multi-span tube with loose supports was performed using commercial FEA code and user subroutine. Support geometry of multi-span tube with a finite gap is realistically modeled by analytical rigid surface. Model of hydrodynamic force is based on the Qusai-steady model which accounts for the inclined angle of relative flow velocity and time delay between flow force and resulting tube motion. During tube vibration from flow loading, impact and friction at the support location is simulated using commercial FEA code with master slave contact algorithm. Analysis results has reasonable agreement with those of references and test experience. Plan of further refinement of analysis model and future test verification is briefly introduced.

Dynamic Response Analysis of Baffled Fuel-Storage Tank in Turnaround Motion (선회운동에 따른 배플형 연료탱크의 동응답 해석)

  • 조진래;홍상일;김민정
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.77-86
    • /
    • 2003
  • Dynamic response of baffled fuel-storage tank in turnaround motion is simulated using the ALE finite element method. Fuel-storage tank undergoes abrupt impact load caused by inertia force of internal fuel in turnaround motion. Also, large dynamic force and moment caused by this load influence structural stability and control system. In this paper, ring-type baffles are adopted to suppress the dynamic influence. Through the parametric analysis with respect to the baffle number and location, the effects of baffle on the dynamic response of baffled fuel-storage tank is analyzed. The ALE finite element method is adopted for the accurate and effective simulation of the hydrodynamic interaction between fluid and structure.

A method for removal of reflection artifact in computational fluid dynamic simulation of supersonic jet noise (초음속 제트소음의 전산유체 모사 시 반사파 아티팩트 제거 기법)

  • Park, Taeyoung;Joo, Hyun-Shik;Jang, Inman;Kang, Seung-Hoon;Ohm, Won-Suk;Shin, Sang-Joon;Park, Jeongwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.364-370
    • /
    • 2020
  • Rocket noise generated from the exhaust plume produces the enormous acoustic loading, which adversely affects the integrity of the electronic components and payload (satellite) at liftoff. The prediction of rocket noise consists of two steps: the supersonic jet exhaust is simulated by a method of the Computational Fluid Dynamics (CFD), and an acoustic transport method, such as the Helmholtz-Kirchhoff integral, is applied to predict the noise field. One of the difficulties in the CFD step is to remove the boundary reflection artifacts from the finite computation boundary. In general, artificial damping, known as a sponge layer, is added nearby the boundary to attenuate these reflected waves but this layer demands a large computational area and an optimization procedure of related parameters. In this paper, a cost-efficient way to separate the reflected waves based on the two microphone method is firstly introduced and applied to the computation result of a laboratory-scale supersonic jet noise without sponge layers.

Geological Significance of Liquefaction and Soft-sediment Deformation Structures (액상화와 연질퇴적변형구조의 지질학적 의미)

  • Ghim, Yong Sik;Ko, Kyoungtae
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.471-484
    • /
    • 2019
  • Liquefaction occurs by a temporal loss of sediment strength as a consequence of increased pore water pressure during the re-arrangement of unconsolidated, granular sediments. Liquefaction is dependent on the physical properties of the sediments and cause surface cracks, landslide, and the formation of soft-sediment deformation structures(SSDS). SSDS is formed by the combined action of the driving force and deformation mechanism(liquefaction, thixotropy, and fluidization) that is triggered by endogenic or exogenic triggers. So research on the SSDS can unravel syndepositional geological events. If detailed sedimentologic analysis together with surrounding geological context suggest SSDS formed by earthquakes, the SSDS provide a clue to unravel syndepositional tectonic activities and detailed paleoseismological information(> Mw 5) including earthquakes that leave no surface expression.

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects (유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가)

  • Kim, Dong-Hyun;Kim, Yu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.

Success Run Test for Reliability Demonstration of 1100℃ Gas Turbine Blades (1100℃급 가스터빈 동익의 무고장시험을 통한 HCF 신뢰성 평가)

  • Lee, Dooyoung;Goo, Jaeryang;Kim, Doosoo;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2017
  • The reliability on high cycle fatigue damage mechanism for new blades manufactured by reverse-engineering is demonstrated by success-run test. Turbine blades always experience various dynamic loads in turbine operation, as well as being in resonance condition and forced by fluid-induced vibrations mostly during run-up/down, which may accumulate high cycle damage to the blades. The accidents caused by blade failure especially incur not only a lot of troubles to the machinery but also huge financial losses. Therefore it is necessary to verify the reliability of blades in advance for the safe use. The success run test for the reliability demonstration is designed and performed for the new blades using the technique known as resonant high cycle fatigue testing.

The Effect of Transient Eccentric Propeller Forces on Shaft Behavior Measured Using the Strain Gauge Method During Starboard Turning of a 4,700 DWT Ship (스트레인 게이지법을 이용한 4,700 DWT 선박의 우현 전타시 프로펠러 편심추력이 축 거동에 미치는 영향 연구)

  • Lee, Jae-ung;Kim, Hong-Ryeol;Rim, Geung-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.482-488
    • /
    • 2018
  • Generally, after stern tube bearing shows a significant increase in local load due to propeller load, which increases the potential adverse effects of bearing failure. To prevent this, research on regarding shaft alignment has been carried out with a focus on reducing the relative slope between the shaft and support bearing(s) under quasi-static conditions. However, for a more detailed evaluation of a shafting system, it is necessary to consider dynamic conditions. In this context, the results revealed that eccentric propeller force under transient conditions such as a rapid rudder turn at NCR, lead to fluid-induced instability and imbalanced vibration in the stern tube. In addition, compared with NCR condition, it has been confirmed that eccentric propeller forces given a rapid rudder starboard turn can lift a shaft from the stern tube bearing in the stern tube, contributes to load relief for the stern tube bearing.

Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads (펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석)

  • Lee, Jang Won;Moon, Jong Sung;Kim, Jung Gyu;Sung, Ki Kwang;Kim, Hyun Min
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.127-134
    • /
    • 2017
  • The reactor internals shall be secured in safety and structural integrity under various vibrational loading conditions. Thus, U.S. NRC, Regulatory Guide 1.20 requires the evaluation for the reactor internals due to acoustic induced vibration including the response to the reactor coolant pump pressure pulsation. This paper suggests a methodology to develop an analytical model of the core support barrel accounting for the fluid around the structure and to analyze the responses to the pump pulsation loads using acoustic structure interaction analysis. The analysis results were compared with those of US Palo Verde 1 CVAP and showed a good agreement. Thus, it is expected that the suggested methodology could be an efficient way to evaluate the response of the core support barrel to the pump pulsation loads.

Aerodynamic Characteristics and Galloping Possibility of Ice Accreted Transmission Conductors by Wind Tunnel Tests (풍동실험을 통한 착빙 가공송전선의 공력 특성 측정 및 갤러핑 발생 분석)

  • Lee, Dooyoung;Goo, Jaeryang;Park, Sooman;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • In this paper, the wind tunnel test for the measurement of aerodynamic characteristics of transmission conductors with asymmetric sections is described. A single conductor model and bundled conductor models with ice accreted shapes are tested both in steady and turbulent flow, and the aerodynamic coefficients are acquired. Transmission conductor galloping is a kind of wind-induced vibration which is characterized by primarily vertical oscillation with a very low frequency and a high amplitude. It is well known that transmission conductor galloping is generally caused by moderately strong, steady winds when a transmission conductor has an asymmetric cross-section shaped by accreted ice. Galloping should be considered from the design stage of overhead lines because it can cause severe wear and fatigue damage to attachments as well as transmission conductors. It is reported that there have been normally 20 events of galloping per year in Korea, which may be followed by serious consequences in the electric power system. Therefore, this research is performed to measure aerodynamic characteristics of ice accreted transmission conductors to understand and control transmission conductor galloping so that it would help to prevent unexpected failures and reduce the maintenance costs caused by galloping.

Life Assessment of Gas Turbine Blade Based on Actual Operation Condition (실 운전조건을 고려한 가스터빈 블레이드 수명평가)

  • Choi, Woo Sung;Song, Gee Wook;Chang, Sung Yong;Kim, Beom Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1185-1191
    • /
    • 2014
  • Gas turbine blades that have complex geometry of the cooling holes and cooling passages are usually subjected to cyclic and sustained thermal loads due to changes in the operating characteristic in combined power plants; these results in non-uniform temperature and stress distributions according to time to gas turbine blades. Those operation conditions cause creep or thermo-mechanical fatigue damage and reduce the lifetime of gas turbine blades. Thus, an accurate analysis of the stresses caused by various loading conditions is required to ensure the integrity and to ensure an accurate life assessment of the components of a gas turbine. It is well known that computational analysis such as cross-linking process including CFD, heat transfer and stress analysis is used as an alternative to demonstration test. In this paper, temperatures and stresses of gas turbine blade were calculated with fluid-structural analysis integrating fluid-thermal-solid analysis methodologies by considering actual operation conditions. Based on analysis results, additionally, the total lifetime was obtained using creep and thermo-mechanical damage model.