• Title/Summary/Keyword: 유체동하중

Search Result 45, Processing Time 0.024 seconds

Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves (불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석)

  • Kim, Seungjun;Won, Deok Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • As well as the strength check, fatigue life check is also mainly required for designing mooring lines of the floating structures. In general, forces which induce dynamic structural response significantly affect to fatigue design of the mooring lines. So, waves are mainly considered as the governing loading for fatigue design of the mooring lines. In this study, characteristics of the fatigue damage of the mooring lines for submerged floating tunnels (SFT) under irregular waves are investigated. For this study time domain hydrodynamic analysis is used to obtain motion of the tunnel and tension and stresses of the mooring lines under the specific environmental conditions. Also, the Rainflow-counting method, the Palmgren-Miner's rule, and S-N curves for floating offshore structures presented by DNV recommendation is applied to calculate the fatigue damage due to the fluctuating stresses. Referring to the design plactice of the tendon pipes for TLP (tension-leg platform), which is very similar structural system to SFT, it is assumed that a 100 year return period wave attacks the SFT systems during 48 hours and the fatigue damages due to the environmental loading are calculated. Following the analysis sequence, the effects of the tunnel draft, spacing and initial inclination angle of the mooring lines on the fatigue damage under the specific environmental loadings are investigated.

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect (선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구)

  • Choi, Jihun;Seol, Hanshin;Park, Ilryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

Dynamic Analysis of Steel Jackets under Wave and Earthquake Loadings I : Linear and Non-linear F. E. Formulation (파랑 및 지진하중을 받는 스틸자켓의 동적해석 I : 선형 및 비선형 유한요소 정식화)

  • 김문영;백인열;고진석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.5
    • /
    • pp.1-11
    • /
    • 2001
  • The purpose of this study is to develop the main program and pre/post processor for the geometric and plastic non-linear analysis of steel jacket structures subjected to wave and earthquake loadings. In this paper, steel jackets are modelled using geometric non-linear space frames and wave loadings re evaluated based on Morrison equation using the linear Airy theory and the fifth Stokes theory. Random wave is generated using JONSWAP spectrum. For earthquake analysis, dynamic analysis is performed using artificial earthquake time history. Also the plastic hinge method is presented for limit analysis of steel jacket. In the companion paper, the pre/post processor is developed and the numerical examples are presented for linear and non-linear dynamic analysis of steel jackets.

  • PDF

Success Run Test for Reliability Demonstration of 1100℃ Gas Turbine Blades (1100℃급 가스터빈 동익의 무고장시험을 통한 HCF 신뢰성 평가)

  • Lee, Dooyoung;Goo, Jaeryang;Kim, Doosoo;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2017
  • The reliability on high cycle fatigue damage mechanism for new blades manufactured by reverse-engineering is demonstrated by success-run test. Turbine blades always experience various dynamic loads in turbine operation, as well as being in resonance condition and forced by fluid-induced vibrations mostly during run-up/down, which may accumulate high cycle damage to the blades. The accidents caused by blade failure especially incur not only a lot of troubles to the machinery but also huge financial losses. Therefore it is necessary to verify the reliability of blades in advance for the safe use. The success run test for the reliability demonstration is designed and performed for the new blades using the technique known as resonant high cycle fatigue testing.

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

Development of Piston Ring Lubrication for the Ring Pack Arrangement (링팩내의 피스톤링 윤활에 관한 연구)

  • 심현해;권오관
    • Tribology and Lubricants
    • /
    • v.1 no.1
    • /
    • pp.46-58
    • /
    • 1985
  • The basic mechanism of lubrication between the piston ring and the cylinder wall is developed theoretically under the assumption of a reciprocating and dynamically loaded slider-bearing pair of parabolic form and smooth plane. A numerical computation for the prediction in cyclic variations of film thickness, net lubricant flow and frictional behaviour is attempted, and the influenec on the performance characteristics due to the ring height, ring face radius of curvature and the degree of offset, is also examined. The computational procedures develeped for a single ring system are extended and applied further to the complex problem of a ring pack system. It is well known that the ring pressure which is the total load on a ring, can be obtained from either an experimental measurement or a gas flow analysis. In this work, the latter of a gas low analysis method was used to calculate the pressures. It is remarked that the work done was focused on the role of flow continuity and lubricant starvation within the ring pack lubrication.

EFFECTS OF AN ORIFICE-TYPE FLOW RESTRICTOR ON THE TRANSIENT THERMAL-HYDRAULIC RESPONSE OF THE SECONDARY SIDE OF A PWR STEAM GENERATOR TO A MAIN STEAM LINE BREAK (가압경수로 주증기관 파단시 증기발생기 2차측 과도 열수력 응답에 미치는 오리피스형 유량제한기의 영향)

  • Jo, J.C.;Min, B.K.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, a numerical analysis was performed to simulate the thermal-hydraulic response of the secondary side of a steam generator(SG) model equipped with an orifice-type SG outlet flow restrictor to a main steam line break(MSLB) at a pressurized water reactor(PWR) plant. The SG analysis model includes the SG upper steam space and the part of the main steam pipe between the SG outlet and the broken pipe end. By comparing the numerical calculation results for the present SG model to those obtained for a simple SG model having no flow restrictor, the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB were investigated.

A Study on ULCS Fatigue Damage Considering the Variation of Cargo Weight Distribution (화물 중량 분포 변화에 따른 초대형 컨테이너선의 피로 손상에 대한 연구)

  • Yi, Minah;Choi, Shin-pyo;Park, Jun-bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.667-679
    • /
    • 2022
  • Fatigue damage analysis of ships includes parameters considering operational factors. Due to these operational variables, there is a difference between the fatigue damage estimated during the design stage and the actual accumulated fatigue damage. Likewise, there are various loading conditions for the real container ships, but at design stage the fatigue damage is calculated by applying the representative loading conditions. Moreover, although the difference in fatigue damages is expected when the actual and design loading conditions are applied, there are few studies on the contributions of the fatigue damage based on the loading conditions of container ships. In this paper, fatigue contributions were investigated from various cargo weight distributions. The hull girder loads calculated through seakeeping analysis and fatigue damages obtained by performing spectral fatigue analysis were identified under new loading conditions. As a result, it was found that the variation of cargo weight distribution in the container ship brought about changes in the hull girder loads and fatigue damage by affecting the hull girder stress.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin;Kim, Dong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.9 s.114
    • /
    • pp.926-936
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

Transient Response Analysis for a Smart UAV Considering Dynamic Loads by Rotating Rotor and Wakes (회전로터 및 후류 동하중을 고려한 스마트 무인기 천이응답해석)

  • Kim, Hyun-Jung;Kim, Dong-Hyun;Oh, Se-Won;Kim, Sung-Jun;Choi, Ik-Hyeon;Kim, Tae-Wook;Lee, Sang-Uk;Kim, Jin-Won;Lee, Jung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.367-375
    • /
    • 2006
  • In this study, structural vibration analyses of a smart unmanned aerial vehicle (UAV) have been conducted considering dynamic loads generated by rotating rotor and wakes. The present UAV (TR-S5-03) finite element model is constructed as a full three-dimensional configuration with different fuel conditions and tilting angles for helicopter, transition and airplane flight modes. Practical computational procedure for modal transient response analysis (MTRA) is established. using general purpose finite element method (FEM) and computational fluid dynamics (CFD) technique. The dynamic loads generated by rotating blades in the transient and forward flight conditions are calculated by unsteady CFD technique with sliding mesh concept. As the results of present study, transient structural displacements and accelerations are presented in detail. In addition, vibration characteristics of structural parts and installed equipments are investigated for different fuel conditions and tilting angles.

  • PDF