• 제목/요약/키워드: 유체동역학 프로그램

Search Result 9, Processing Time 0.019 seconds

The Metacomputing System for CFD Program Developer (CFD 프로그램 개발자를 위한 메타컴퓨팅 시스템)

  • 강경우
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.1
    • /
    • pp.43-51
    • /
    • 2001
  • Metacomputing system is the environment, which helps the users easily and promptly deal with their jobs. with integration of the distributed computing resources and visualization device. In this research, we have developed a prototype of a special-purpose metacomputing system for simulation in CFD(Computational Fluid Dynamics) field. This system supports the automatic remote compilation, transparent data distribution, the selection of appropriate computing resource, and the realtime visualization. This research can be summarized as following: a study on selecting resource and the integration of component systems. In the research of selecting computing resource, we use the property of CFD algorithm. In the research of realtime visualization. we modify a popular visualizer.

  • PDF

Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method (CFD기법을 연계한 자이로콥터의 전산구조동역학 해석)

  • Kim Hyun-Jung;Jung Se-Un;Park Hyo-Keun;Yang Chang-Hak;Kim Dong-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.295-302
    • /
    • 2006
  • In this study, computational structural dynamic analyses of a gyrocopter have been conducted considering unsteady dynamic hub-loads due to rotating blades. 3D CATIA models with detailed mechanical parts we constructed and virtually assembled into the complete aircraft configuration. The dynamic loading generated by rotating blades in the forward flight condition are calculated by a commercial computational fluid dynamics (CFD) code such as FLUENT. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics of the gyrocopter. Free vibration analysis results for different fuel and pilot conditions, frequency responses and transient responses for critical flight conditions are also presented in detail.

A Study on a Dynamics Simulation Program Development for Floating Wind Turbines (부유식 풍력발전 시스템 동역학 해석 프로그램 개발 연구)

  • Rim, Chae-Whan;Song, Jin-Seop;Chung, Tae-Young;Moon, Seok-Jun;Go, Jin-Yong;Lee, Sung-Kyun;Bae, Dae-Sung;Bae, Dong-Hee
    • Journal of Wind Energy
    • /
    • v.2 no.2
    • /
    • pp.30-37
    • /
    • 2011
  • A floating wind turbine dynamic simulation program, WindHydro, is newly developed taking into account wind inflow and incident wave. WindHydro consists of 5 modules, HDFloat for hydrodynamics, HDProp for hydrodynamic property calculation, HDMoor for mooring dynamics, AeroDyn for aerodynamics, DAFUL for multi-body dynamics with nonlinear elasticity, and interface program that connects each calculation module. A turbulent wind and regular wave load case is simulated for the 5-MW OC3-Hywind with a spar bouy platform and catenary mooring lines. The results are compared with the results of the FAST(developed by NREL). As a result, the overall system responses from WindHydro and FAST agree well although some differences in the generator responses are observed.

Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test (봉충격시험에 의한 동합금의 동적 항복응력 결정)

  • 이정민;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.

Development of quasi-static analysis program for catenary mooring system using OpenFOAM (OpenFOAM을 이용한 catenary 계류시스템의 준정적 해석 프로그램 개발)

  • Choi, Jun Hyeok;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.274-280
    • /
    • 2017
  • Generally, global performance analysis in offshore platforms is performed using potential-based numerical tools, which neglect hydrodynamic viscous effects. In comparison with the potential theory, computational fluid dynamics (CFD) methods can take into account the viscous effects by solving the Navier-Stokes equation using the finite-volume method. The open-source field operation and manipulation (OpenFOAM) C++ libraries are employed for a finite volume method (FVM) numerical analysis. In this study, in order to apply CFD to the global performance analysis of a hull-mooring coupled system, we developed a numerical wave basin to analyze the global performance problem of a floating body with a catenary mooring system under regular wave conditions. The mooring system was modeled using a catenary equation and solved in a quasi-static condition, which excluded the dynamics of the mooring lines such as the inertia and drag effects. To demonstrate the capability of the numerical basin, the global performance of a barge with four mooring lines was simulated under regular wave conditions. The simulation results were compared to the analysis results from a commercial mooring analysis program, Orcaflex. The comparison included the motion of the barge, catenary shape, and tension in the mooring lines. The study found good agreement between the results from the developed CFD-based numerical calculation and commercial software.

Study on the Applicability of a New Multi-body Dynamics Program Through the Application to the Heave Compensation System (상하동요 감쇠장치 적용을 통한 새로운 다물체동역학 프로그램의 적용성 검토)

  • Ku, Nam-Kug;Ha, Sol;Roh, Myung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.247-254
    • /
    • 2013
  • In this paper, dynamic response analysis of a heave compensation system is performed for offshore drilling operations based on multibody dynamics. With this simulation, the efficiency of the heave compensation system can be virtually confirmed before it is applied to drilling operations. The heave compensation system installed on a semi-submersible platform consists of a passive and an active heave compensator. The passive and active heave compensator are composed of several bodies that are connected to each other with various types of joints. Therefore, to carry out the dynamic response analysis, the dynamics kernel was developed based on mutibody dynamics. To construct the equations of motion of the multibody system and to determine the unknown accelerations and constraint forces, the recursive Newton-Euler formulation was adapted. Functions of the developed dynamics kernel were verified by comparing them with other commercial dynamics kernels. The hydrostatic force with nonlinear effects, the linearized hydrodynamic force, and the pneumatic and hydraulic control forces were considered as the external forces that act on the platform of the semi-submersible rig and the heave compensation system. The dynamic simulation of the heave compensation system of the semi-submersible rig, which is available for drilling operations with a 3,600m water depth, was carried out. From the results of the simulation, the efficiency of the heave compensation system were evaluated before they were applied to the offshore drilling operations. Moreover, the calculated constraint forces could serve as reference data for the design of the mechanical system.

ExLO: Development of a Three-Dimensional Hydrocode (ExLO:3차원 유체동역학 프로그램의 개발)

  • Chung, W.J.;Lee, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.235-237
    • /
    • 2008
  • A unified hydrocode, ExLO, in which Largrangian, ALE and Eulerian solvers are incorporated into a single framework, has recently been developed in Korea. It is based on the three dimensional explicit finite element method and written in C++. ExLO is mainly designed for the calculation of structural responses to highly transient loading conditions, such as high-speed impacts, high-speed machining, high speed forming and explosions. In this paper the numerical schemes are described. Some improvements of the material interface and advection scheme are included. Details and issues of the momentum advection scheme are provided. In this paper the modeling capability of ExLO has been described for two extreme loading events; high-speed impacts and explosions. Numerical predictions are in good agreement with the existing experimental data. Specific applications of the code are discussed in a separate paper in this journal. Eventually ExLO will be providing an optimum simulation environment to engineering problems including the fluid-structure interaction problems, since it allows regions of a problem to be modeled with Lagrangian, ALE or Eulerian schemes in a single framework.

  • PDF

Development of Control Method for Improving Energy Efficiency of Unmanned Underwater Gliders (무인 수중글라이더의 에너지 효율 개선을 위한 제어방법 개발)

  • La, Seung-kyu;Ko, Sung-hyup;Ji, Dae-hyeong;Chon, Seung-jae;Jeong, Seong-hoon;Choi, Hyeung-sik;Kim, Joon-young
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • In this paper, unmanned underwater glider was designed for high-depth operation and adopted a bladder-type buoyancy controller for improving battery efficiency, and the motion controller controls the pitch angle by moving the internal mass battery. To improve the energy efficiency of the unmanned underwater glider, a layered PID controller that performs control by section was designed. Simulation program including 6-DOF motion equations and hydrodynamics coefficients of an unmanned underwater glider is constructed using Matlab/Simulink program. Control methods such as PID controller, sliding mode controller and layered PID controller were applied to the simulator to compare the dynamics performance and energy efficiency. As a result, the layered PID controller showed improved control performance compared to other controllers and improved energy efficiency of approximately 7.2% compared to PID controller.

Nonlinear Simulation of Flutter Flight Test with the Forced Harmonic Motion of Control Surfaces (조종면 강제 조화운동을 고려한 비선형 플러터 비행시험 모사)

  • Yoo, Jae-Han;Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kim, Young-Ik;Lee, Hee-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.6
    • /
    • pp.92-100
    • /
    • 2002
  • In this study, transonic/supersonic nonlinear flutter analysis system of a complete aircraft including forced harmonic motion pf control surfaces has been effectively developed using the modified transonic small disturbance (TSD) equation. To consider the nonlinear effects, the coupled time marching method (CTM) combining computational structural dynamics (CFD) has been directly applied for aeroelastic computations. The grid system for a complex full aircraft configuration is effectively generated by the developed inhouse code. Intransonic and supersonic flight regimes, the characteristics of static and dynamic aeroelastic effect has been investigated for a complete aircraft model. Also, nonlinear flutter flight simulations for the forced harmonic motion of control surfaces are practically presented in detail.