• Title/Summary/Keyword: 유체동력

Search Result 270, Processing Time 0.028 seconds

Explicit Design of Uniformly-Rough Pipe on a Slope with Pumping Power (균일조도 동력경사관의 양해법 설계)

  • 유동훈;강찬수
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.163-176
    • /
    • 1996
  • When a pipe is deployed on a sloping bed, pumping power required for a discharge can be estimated immediately without any iteration process with an explicit form of a friction factor equation. Pumping power being given, however, traditional method requires an iteration process for the solution of discharge and pipe diameter even for the uniformly-rough pipe. You (1955b) has suggested explicit equations for the estimation of discharge and pipe diameter particularly for the cases of pipe on a slopintg bed without pumping and pipe on a horizontal bed with a pumping power. Based on his approach and previous results, the present researchers have developed explicit equations of discharge and pipe diameter for the general case of pipe on a sloping bed with a pumping power. The equations of boundary criteria are also presented in explicit way which render proper choice of various equations suitable for the flow condition between five characteristics. Verification studies are also carried out by applying the explicit equations to a practical example.

  • PDF

Numerical Analysis of Impact Forces and Entry Behaviors of the High Speed Water Entry Bodies (고속으로 입수하는 물체에 대한 충격량 및 입수 거동 해석)

  • Kim Y. W.;Park W. G.;Kim C. S.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • The numerical methodology for computing tile impact forces and water entry behaviors of high speed water entry bodies was been developed. Since the present method assumed the impact occurs within a very short time interval. the viscous effects do not have enough time to play a significant role in the impact forces, that is, the flow around a water-entry object was assumed as an incompressible potential flow and is solved by the source panel method. The elements fully submerged into the water are routinely treated, but the elements intersected by the effective planar free surface are redefined and reorganized to be amenable to the source panel method. To validate the present code, it was applied to disk, cone and ogive model and compared with experimental data. Good agreement was obtained. The water entry behavior such as the bouncing phenomena from the free surface was also simulated using the impact forces and two degree of freedom dynamic equation. Physically acceptable results were obtained.

  • PDF

A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs (수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구)

  • Kim, B. S.;Kim, J. H.;Nam, C. D.;Lee, Y. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Design of Drag-type Vertical Axis Miniature Wind Turbine Using Arc Shaped Blade (아크형 날개를 이용한 항력식 수직축 소형 풍력 터빈 설계)

  • Kim, Dong-Keon;Kim, Moon-Kyung;Cha, Duk-Keun;Yoon, Soon-Hyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.7-12
    • /
    • 2006
  • This study is to develop a system of electric power generation utilizing the wind resources available in the domestic wind environment. We tested drag-type vortical wind turbine models, which have two different types of blades: a flat plate and circular arc shape. Through a performance test, conditions of maximum rotational speed were found by measuring the rpm of wind turbine. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller From the measurements for miniature turbine models with two different blades, the circular arc shape was found to Produce a maximum rotational speed for the same wind velocity condition. Based on this result, the prototype with the circular arc blade was made and tested. We found that it produces 500W at the wind velocity of 10.8 m/s and the power coefficient was 20%.

Agitation Performance Study of 2-shafts Agitator Rotate Directio in the Mud Tank Based on CFD (CFD를 이용한 머드 탱크 2축 교반기의 회전방향에 따른 교반성능 연구)

  • Im, Hyo-Nam;Lee, Hee-Woong;Lee, In-Su;Choi, Jae-Woong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • In drilling process of oil wells, the drilling fluid such as mud keeps the drill bit cool and clean during drilling, with suspending drill cuttings and lubricating a drill bit. In this paper, a commercial CFD package(ANSYS Fluent 15.0) was used to solve the hydrodynamic force and evaluate mud mixing time in the mud mixing tank on offshore drilling platforms. Prediction of power consumption in co-rotating and counter-rotating models has been compared with results of Nagata's correlation equation. This research shows the hydrodynamic effect inside the two phase mud mixing tank according to rotating directions(co-rotating and counter-rotating). These results, we can conclude that the co-rotating direction of the two shafts with mixing blade in the mud mixing tank can be a preferable in power consumption and mixing time reduction.

Study on Measuring the Performance of an Air Tool Operating at 100,000 RPM Class (100,000 RPM급으로 회전하는 에어공구의 성능측정에 관한 연구)

  • Cho, Soo-Yong;Kim, Eun-Jong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.44-50
    • /
    • 2003
  • An experiment is conducted for measuring the performance of an air tool, which is operated at 100,000 RPM in an unloaded state with very low torque. A 551 kPa in gauge pressure is supply to the inlet of an air tool. An experimental apparatus is developed as a friction type dynamometer. Inlet total pressure, air flow rate, rotational speed and operating force are measured simultaneously. Torque, output power and specific output power are obtained with different rotational speeds. Those are compared with the experimental results which were obtained by a commercial dynamometer. However, no commercial dynamometers are available for measuring the torque above 30,000 RPM. In order to reduce the rotational speed, a reduction gear is applied between the air tool and the commercial dynamometer. Torque and power obtained by the commercial dynamometer show $55\%$ lower than those obtained by the developed friction type dynamometer, because the mass is added to the rotor of air tool for the braking system of the commercial dynamometer and power loss is generated by the reduction gear. From the compared results, the friction type dynamometer should be applied for measuring the performance of the air tool operating at low torque and high RPM.

An Experimental Study on the Performance of the Vertical-Axis Wind Turbine (수직축 풍력터빈 성능개선에 관한 실험적 연구)

  • Kim, Byung-Kook;Kim, Young-Ho;Song, Woo-Seog;Lee, Seung-Bae;Nam, Sang-Kyu;Kim, Sa-Man
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.17-24
    • /
    • 2007
  • This paper presents the design procedure of a vertical wind turbine named jet-wheel-turbo turbine and the numerical and experimental verifications. The design parameters such as the rotor inlet angle, the diameter-to-hub ratio, the inlet guide outlet angle and the solidity were optimized to maximize the energy transfer, and to further increase the turbine efficiency by applying the side guide vane and the side opening to the rotor. The maximum power coefficient of 0.59, which is much higher than the ever-designed three-bladed horizontal turbines, was experimentally obtained when the optimal inlet- and side-guide vanes were installed and both sides of the rotor were 80% opened. The maximum power coefficients occur at the tip speed ratio ranging between 0.6 and 0.7. This vertical-axis turbine model can be applied to the large-scale power generation system with the speed and torque control algorithm for the specified wind characteristics.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators (압전구동 능동형 체크밸브를 이용한 고출력 마이크로펌프)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a novel high power micropump using active check valves in place of conventional passive check valves employed at the inlet and outlet ports is presented. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. A prototype micropump having an effective size of $17mm{\times}8mm{\times}11mm$ is fabricated. Frequency-dependent flow rate characteristics, bi-directional flow characteristics and load characteristics are experimentally investigated using a timing control method for valve closing motion. From the obtained experimental results, it is ascertained that optimal values of the phase shift compared to the voltage to drive pump chamber are $15^{\circ}$ for inlet check valve and $195^{\circ}$ for outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with an effective size of $10mm{\times}10mm{\times}10mm$ is fabricated and the basic characteristics are experimentally investigated.

  • PDF

Development of 3MW Wind Turbine for IEC Wind Class IIa (3MW급 IEC Wind Class IIa 풍력발전시스템 개발)

  • Lee, K.H.;Lee, S.I.;Woo, S.W.;Oh, I.G.;Park, J.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.236-239
    • /
    • 2011
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$(TC IIa) which is a trade name of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$(TC IIa) has been designed in consideration of high Reliability, Availability, Maintainability and Serviceability (RAMS) and low cost of electricity (CDE) for the TC IIa condition based on GL guideline. An integrated drive-train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in partial load operation and grid-friendly system for both 50 Hz and 60 Hz. A pitch-regulated variable speed control system has been introduced to control wind turbine power while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements.

  • PDF