• Title/Summary/Keyword: 유전체 서열

Search Result 427, Processing Time 0.042 seconds

Construction of a Genetic Linkage Map in Radish(Raphanus sativus L.) Using RAPD Markers (RAPD 마커를 이용한 무의 유전자지도 작성)

  • Ahn, Choon-Hee;Choi, Su-Ryun;Lim, Yong-Pyo;Chung, Hae-Joon;Yae, Byeong-Woo;Yoon, Wha-Mo
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.151-159
    • /
    • 2002
  • Genetic map and molecular marker have a great importance in improving and facilitating crop breeding program as well as in genome analysis and map-based cloning of genes representing desirable characters. This study aimed at developing RAPD markers and constructing a genetic linkage map using 82 BC$_1$F$_1$individuals originated from the cross between '835' and B$_2$in radish (Raphanus sativus L.). One of the parents for genetic linkage map construction, '835'(P$_1$) of egg type is susceptible to Fusarium wilt and have medium resistance to virus infection and the other parent, B$_2$(P$_2$) of round type, is susceptible to Fusarium wilt and virus, Screening of 394 RAPD primers in BC$_1$F$_1$) population resulted in selecting 128 polymorphic markers which displayed 1:1 segregation pattern. Two markers failed to display 1:1 segregation and showed the segregation ratio skewed to maternal genotype. Selected markers were categorized into 14 linkage group based on LOD score represented by MAPMAKER/EXP program. Five groups composed of single marker among them were excluded from the linkage map, and consequently, the remaining groups are well matched with the number of radish chromosome (n=9). The linkage map constructed with 128 markers covers 1,688.3 cM and the average distance between markers was 13.8 cM. For developing STS marker, we determined the partial nucleotide sequence of OPE10 marker at both ends and designed a oligonucleotide primer pair based on this sequence. STS PCR using the primer pair displayed a single, clear band of which segregation is perfectly matched with that of OPE10 marker. This implies that RAPD markers could readily convert into clear and reliable STS markers.

Clinical Features, Molecular Analysis, and Outcome of ERT in Korean Patients with Mucopolysaccharidosis Type VI (국내 6형 뮤코다당증의 임상 양상, 분자유전학적 특징 및 효소치료의 효과에 대한 고찰)

  • Wichajarn, Khunton;Kim, Jinsup;Yang, Aram;Sohn, Young Bae;Lee, Beom Hee;Yoo, Han-Wook;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.1
    • /
    • pp.24-33
    • /
    • 2016
  • Mucopolysaccharidosis type VI (MPS VI) is a rare disease caused by the mutation of ARSB with prevalence range from 1/5,000 in northeast Brazil to 1/2,057,529 births in Czech Republic. In Asia, there is only one published figure in Taiwan of about 1/833,000 births. The exact prevalence in the Korean population is unknown, but we estimated the incidence of MPS VI is about 0.03/100,000 live births. Enzyme replacement therapy (ERT) with recombinant human Arylsulfatase B (rhASB) is a modality for the treatment of MPS VI that reduces the excretion of urine glycosaminoglycan (GAG) and improves joint motion, pulmonary function, and endurance. We presented the clinical features, molecular analysis and outcome of ERT in three Korean MPS VI patients. All patients had the typical characteristic clinical features of MPS IV. Short stature, dysostosis multiplex, corneal opacity and valvular heart disease were found at first presentation, while restrictive lung disease and carpal tunnel syndrome developed later in all patients. Molecular analysis demonstrated novel missense and nonsense mutation in the patients, including p.Ile 67Ser, p.Gly328Arg, $p.Arg191^*$, p.Asp352Asn, and p.Gly17Asp. After ERT, urine GAG was decreased in all patients. Skeletal involvement, corneal opacity, heart valve abnormalities and pulmonary function were not improved with ERT, but it had a better outcome on regarding joint motion and endurance. One patient underwent allogeneic bone marrow transplantation (BMT) prior to ERT, but their clinical response was not improved much after BMT. This study demonstrates clinical phenotypes and molecular analysis of the severe form of MPS VI in Korean patients.

  • PDF

Isolation of Potato StACRE Gene and Its Function in Resistance against Bacterial Wilt Disease (감자유전자 StACRE의 분리 및 풋마름병 저항성 기능 검정)

  • Park, Sang-Ryeol;Cha, Eun-Mi;Kim, Tae-Hun;Han, Se-Youn;Hwang, Duk-Ju;Ahn, Il-Pyung;Cho, Kwang-Soo;Bae, Shin-Chul
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.177-183
    • /
    • 2012
  • Bacterial wilt (brown rot) caused by Ralstonia solanacearum (Rs) is one of the most devastating bacterial plant diseases in potatoes. To isolate bacterial wilt disease resistance-related genes from the potato, the StACRE (HM749652) gene was isolated and a sequenced search was performed using functional orthologs of Solanaceae from potatoes. StACRE is homologous to the tobacco NtACRE 132 protein and belongs to the ATL family involved in ubiquitination. To analyze the expression pattern of this gene, RT-PCR was performed with potato treated with salicylic acid (SA) and Rs (KACC 10722). StACRE was strongly induced 3 hours after treatment with SA and 12 hours after infection with Rs. To investigate its biological functions in the potato, we constructed a vector for overexpression in the potato by the Gateway system, and then generated transgenic potato plants. The gene expression of transgenic potato was analyzed by northern blot analysis. In the results of disease resistance assay in relation to bacterial wilt, StACRE overexpressed transgenic potato plants were shown to have more resistance than wild-type potato.

Two Cases of MELAS Syndrome Manifesting Variable Clinical Cour (다양한 임상경과를 보인 멜라스(MELAS, mitochondrial encephalopathy, lactic acidosis, and stroke-like episode) 증후군 2례)

  • Choi, Seo Yeol;Lee, Seung-Ho;Myung, Na-Hye;Lee, Young-Seok;Yu, Jeesuk
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.16 no.2
    • /
    • pp.102-108
    • /
    • 2016
  • Mitochondrial encephalopathy, lactic acidosis, and stroke-like episode (MELAS) syndrome is one of mitochondrial encephalopathy. As the early clinical manifestations can be variable, it is important to suspect the disease, especially in patients with multiple organ dysfunctions. A boy was diagnosed with epilepsy when he was 9 years old. Two years later, severe headache and blurred vision developed suddenly. On examination, left homonymous hemianopsia was detected with corresponding cerebral parenchymal lesions in right temporo-occipito-parietal areas. MELAS syndrome was confirmed by genetic test, which showed m.3243 A>G mitochondrial DNA mutation. Multivitamins including coenzyme Q10 were added to anticonvulsant. He experienced 4 more events of stroke-like episodes over 5 years, but he is able to perform normal daily activities. A 13-year-old boy was brought to the hospital due to suddenly developed respiratory arrest and asystole associated with pneumonia. Past medical history revealed that he had multiple medical problems such as epilepsy, failure-to-thrive, optic atrophy, and deafness. He has been on valproic acid as an anticonvulsant which was prescribed from local clinic. He recovered after the resuscitation, but his cognition and motor function were severely damaged. He became bed-ridden. He was diagnosed with MELAS syndrome by brain MRI, muscle biopsy, and clinical features. Genetic test did not reveal any mitochondrial gene mutation. Four years later, he expired due to suddenly developed severe metabolic acidosis combined with hyperglycemic hyperosmolar nonketotic coma. The clinical features of MELAS syndrome are variable. Early diagnosis before the presentation to the grave clinical course may be important for the better clinical outcome.

  • PDF

A Single Nucleotide Deletion resulting in Frameshift in Two Korean Neonates with Thyroxine-Binding Globulin Deficiency (단일 뉴클레오타이드 결손으로 인한 Frameshift 돌연변이로 규명된 티록신결합글로불린 결핍증 1례)

  • Park, Sang-Joon;Suh, Jin-Soon;Jung, Min-Ho;Lee, Hee-Jin;Suh, Byung-Kyu;Lee, Won-Bae;Lee, Byung-Churl
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.11
    • /
    • pp.1252-1255
    • /
    • 2005
  • Abnormalities in the levels of thyroxine-binding globulin (TBG) are not associated with clinical disease and they do not require treatment. Congenital TBG deficiency is inherited in an X-linked manner. To date, some complete and partial TBG variants and one polymorphism have been identified by analysis of the TBG gene. Two male neonates were referred to us because of their low $T_4$ levels that were noted on the neonatal screening test. They showed normal levels of free $T_4$ and TSH. Their serum TBG was not detectable and those values of their parents were within the normal ranges. The genomic DNA was extracted from their white blood cells and the four coding exons of the TBG gene were amplified by using polymerase chain reaction. Sequencing of the four coding regions and all the intron/exon junctions revealed a single nucleotide deletion of the first base of the codon 352 of the mature protein in both of the neonates. This mutation resulted in a frameshift and a premature stop codon (TGA) 374. Their mothers were shown to be heterozygotes. We detected a single nucleotide deletion resulting in a frameshift in two male Korean neonates who had complete TBG deficiency.

Cloning and Characterization of Xylanase 11B Gene from Paenibacillus woosongensis (Paenibacillus woosongensis의 Xylanase 11B 유전자 클로닝과 특성분석)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.155-161
    • /
    • 2017
  • A gene coding for the xylanase predicted from the partial genomic sequence of Paenibacillus woosongensis was cloned by PCR amplification and sequenced completely. This xylanase gene, designated xyn11B, consisted of 1,071 nucleotides encoding a polypeptide of 356 amino acid residues. Based on the deduced amino acid sequence, Xyn11B was identified to be a modular enzyme, including a single carbohydrate-binding module besides the catalytic domain, and was highly homologous to xylanases belonging to glycosyl hydrolase family 11. The SignalP4.1 server predicted a stretch of 26 residues in the N-terminus to be the signal peptide. Using DEAE-Sepharose and Phenyl-Sepharose column chromatography, Xyn11B was partially purified from the cell-free extract of recombinant Escherichia coli carrying a copy of the P. woosongensis xyn11B gene. The partially purified Xyn11B protein showed maximal activity at $50^{\circ}C$ and pH 6.5. The enzyme was more active on arabinoxylan than on oat spelt xylan and birchwood xylan, whereas it did not exhibit activity towards carboxymethylcellulose, mannan, and para-nitrophenyl-${\beta}$-xylopyranoside. The activity of Xyn11B was slightly increased by $Ca^{2+}$ and $Mg^{2+}$, but was significantly inhibited by $Cu^{2+}$, $Ni^{2+}$, $Fe^{3+}$, and $Mn^{2+}$, and completely inhibited by SDS.

Genetic Analysis of 5 Mountain Cultivated Ginseng and Wild Ginseng in Korea (국내 5개 지역의 장뇌삼과 산삼의 유전 분석)

  • Ahn, Ji-Young;Kang, Sang-Gu;Kang, Ho-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.6
    • /
    • pp.757-763
    • /
    • 2009
  • ISSR PCR technique was applied to investigate genetic relationship among 5 Mountain cultivated ginseng populations (Jinan, Hongcheon, Punggi, Andong and Yeongju) and cDNA libraries of wild ginseng roots were constructed and analyzed functional genes related to morphogenesis via EST. Twenty four ISSR markers tested produced 127 polymorphic loci from 5 regional Mountain cultivated ginseng. Among the regional samples, Yeongju was made 18 polymorphic loci that were the highest level of variations among the cultivated regions. The range of similarity coefficient was 0.46~0.58 and the regional samples of Punggi and Hongcheon, Jinan and Andong were classified to similar groups respectively, whereas Yeongju was shown to be separate group with high level of genetic variation in UPGMA cluster analysis. As a result, there was no relationship according to geographical distance and genetic similarity. Eleven cDNA clones were consisted of 9 known genes and 2 unknown genes analyzed by BLAST program of NCBI. To recognize expression pattern of Homeodomain transcription factor related genes, Northern Blot analysis was performed for wild ginseng's leaf and root. As a result, the gene was only expressed by Mountain wild ginseng root.

Association of Single Nucleotide Polymorphism (SNP) in the PGK 2 Gene with Growth Traits in Pigs (돼지 PGK 2 유전자의 단일염기다형성 및 성장 형질과의 연관성 구명)

  • Jang, Hong-Chul;Kim, Sang-Wook;Lim, Da-Jeong;Kim, Jae-Young;Cho, Kyu-Ho;Kim, Myung-Jick;Lee, Ji-Woong;Choi, Bong-Hwan;Kim, Tae-Hun
    • Journal of Animal Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • The purpose of this study was to analyse of association between growth traits and single nucleotide polymorphisms (SNPs) polymorphism of phosphoglycerate kinase 2 (PGK 2) gene in pigs. The birth weight of piglet influences on weaning weight and survival rate that are import economic traits in pig industry. Also, these growth traits are representative factor to decrease a period getting to marketing weight as well as growth rate in pig. The PGK 2 is an isozyme that catalyzes the first ATP-generating step in the glycolytic pathwayand important enzyme related with energy metabolism. Twenty of SNPs were discoveredby genome structure analysis that compares the sequence on promoter and transcription region of PGK 2 gene in porcine chromosome 7. An association between PGK 2 SNPs and growth traits was analyzed in $F_2$ reciprocal-crossbred population between korean native pig (KNP) and Landrace. Association analysis indicated that polymorphism of the PGK 2 gene promoter region has significant effects on weight at birth (p<0.01) and weight at 3 weeks of age (p<0.0001). These results suggest that PGK 2 gene polymorphism was associated with energy metabolism and physiological function of growth in pig.

The Characteristics of Imipenem-Resistant Bacteria Isolated from One Patient (한 환자에게서 분리된 Imipenem 내성세균들의 특성)

  • Park, Chul;Lee, Hyeok-Jae;Seo, Min-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.49 no.4
    • /
    • pp.413-419
    • /
    • 2017
  • Four imipenem-resistant bacteria were isolated from the clinical specimens of a patient with pneumonia. To identify the isolates, we used the GN card of Vitek II system and performed a phylogenetic analysis based on 16S rRNA gene sequence. The isolates were identified as P. aeruginosa (2 strains), P. monteilii (1 strain), and P. putida (1 strain), and were tested for antibiotic resistance after determining the MIC of imipenem to be $${\geq_-}8{\mu}g/mL$$ using the AST-N225 card of Vitek II system. The imipenem-resistant genotypes were determined using PCR products amplified using specific ${\beta}-Lactamase$ gene primers. The MBL gene was identified in all four isolates. One strain of P. aeruginosa exhibited the VIM and SHV-1 type genes, while the other strain exhibited both VIM and OXA group II genes. According to the antimicrobial susceptibility test, the bacteria were more susceptible to amikacin than other antibiotics. DNA fingerprint analysis using ERIC-PCR to analyze the epidemiological relationship between strains estimated that both the P. aeruginosa isolates were similar, but exhibited different DNA band types. It is uncommon to find four strains of imipenem-resistant bacteria with different DNA band types in a single patient.

Modulation of Escherichia coli RNase E. Action by RraAS2, a Streptomyces coelicolor Ortholog of RraA (Streptomyces coelicolor의 RraA 동족체인 RraAS2에 의한 Escherichia coli RNase E 활성조절)

  • Ahn, Sang-Mi;Shin, Eun-Kyoung;Yeom, Ji-Hyun;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.44 no.2
    • /
    • pp.93-97
    • /
    • 2008
  • RraA is a recently discovered protein inhibitor that regulates the enzymatic activity of RNase E, which plays a major role in the decay and processing of RNAs in Escherichia coli. It has also been shown to regulate the activity of RNase ES, a functional Streptomyces coelicolor ortholog of RNase E, which has 36% identity to the amino-terminal region of RNase E. There are two open reading frames in S. coelicolor genome that can potentially encode proteins having more than 35.4% similarity to the amino acid sequence of RraA. DNA fragment encoding one of these RraA orthologs, designated as RraAS2 here, was amplified and cloned in to E. coli vector to test whether it has ability to regulate RNase E activity in E. coli cells. Co-expression of RraAS2 partially rescued E. coli cells over-producing RNase E from growth arrest, although not as efficiently as RraA, induced by the increased ribonucleolytic activity in the cells. The copy number of ColEl-type plasmid in these cells was also decreased by 14% compared to that in cells over-producing RNase E only, indicating the ability of RraAS2 to inhibit RNase E action on RNA I. We observed that the expression level of RraAS2 was lower than that of RraA by 4.2 folds under the same culture condition, suggesting that because of inefficient expression of RraAS2 in E. coli cells, co-expression of RraAS2 was not efficiently able to inhibit RNase E activity to the level for proper processing and decay of all RNA species that is required to restore normal cellular growth to the cells over-producing RNase E.