The Journal of Korean Institute of Information Technology
/
v.16
no.11
/
pp.1-9
/
2018
Drug repositioning is to discover new uses of drugs. Text mining derives knowledge from unstructured text. We propose a method to predict new drug-disease relationships by taking into account the rate of frequency of genes simultaneously measured in disease-gene and gene-drug. Co-occurrence of drug-gene and gene-disease in the biological literature is counted and calculate the rate of the gene for each drug and disease. Weights of drug-disease relationships are calculated using the average of the rates of genes that are measured and used to measure the accuracy for each disease. In measuring drug-disease relationships, a more accurate identification of relationships was shown by measuring the frequency on a sentence and considering multiple relationships than existing method.
Kim, Jeongwoo;Kim, Hyunjin;Yeo, Yunku;Shin, Mincheol;Park, Sanghyun
KIISE Transactions on Computing Practices
/
v.23
no.1
/
pp.28-36
/
2017
After the genome projects of the 90s, a vast number of gene studies have been stored in online databases. By using these databases, several biological relationships can be inferred. In this study, we proposed a method to infer disease-gene relationships using title and body in biomedical text. The title was used to extract hub genes from data in the literature; whereas, the body of the literature was used to extract sub genes that are related to hub genes. Through these steps, we were able to construct a local gene-network for each report in the literature. By integrating the local gene-networks, we then constructed a global gene-network. Subsequent analyses of the global gene-network allowed inference of disease-related genes with high rank. We validated the proposed method by comparing with previous methods. The results indicated that the proposed method is a meaningful approach to infer disease-related genes.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.420-422
/
2012
DNA 메틸화는 후성유전학의 한 유형으로 유전자 발현을 조절하여 질병을 비롯한 다양한 생물학적 프로세스에 영향을 준다고 알려져 있다. 따라서 DNA 메틸화 정도와 인간 질병과의 연관성에 관한 연구는 질병의 원인 및 기전을 밝히고 메틸화 프로세스 조절을 통한 질병 치료 방법 개발을 위한 기반이 될 수 있다. 유전자 발현 조절 및 질병 발생은 많은 인자들의 복합적인 상호작용에 영향을 받으므로, 여러 위치에서의 메틸화 정도들의 고차원 조합을 이용한 질병과의 연관 관계 분석이 필수적이다. 본 연구에서는 진화 연산과 가중치 학습에 기반하여 유방암 발생과 연관되어 있는 메틸화 위치의 고차 상호작용을 탐색할 수 있는 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2013.11a
/
pp.1117-1120
/
2013
사람의 질병은 여러 요인의 복합적인 작용으로 발생하는데 이 중 유전적인 요인에는 유전자 간의 상호작용을 들 수 있다. 마이크로어레이(Microarray) 데이터로부터 유전자의 활성화 및 억제 관계를 밝히려는 다양한 시도는 계속되어왔다. 그러나 마이크로어레이 자체가 갖는 불안정성과 실험조건 수의 제약이 커다란 장애가 되어 왔다. 이에 생물학적 사전 지식을 포함하는 방법들이 제안되었다. 본 논문에서는 질병과 관련된 유전자 간의 상호작용의 집합을 질병 모듈이라 정의하고 이를 유전자 알고리즘으로 학습한 베이지안 네트워크(Bayesian network)로 추론하는 방법을 제안한다.
Proceedings of the Korea Information Processing Society Conference
/
2003.05a
/
pp.321-324
/
2003
근래, DNA microarray와 관련된 기술의 발달은 한번에 수천 개 이상의 유전자발현데이터를 얻을 수 있게 해주었고, 많은 연구기관에서 이를 이용한 질병 분류에 관하여 연구를 진행하고 있다. 하지만 수천 개의 유전자 모두가 암에 관계된 것은 아니기 때문에, 관련 유전자의 선별 작업을 먼저 수행하는 것이 필요하며, 이를 위하여 통계기반 방법, 정보이론기반 방법 등 다양한 방법이 사용되고 있다. 본 논문에서는 의미 있는 유전자를 선택하는 방법으로서, 일반적인 순위-기반 방법이 양의 상관관계만 이용한다는 점을 보완하여, 유전자와 학습데이터 사이의 음의 상관관계까지도 고려한 방법을 제시하였다. 제안한 방법의 성능을 검증하고자 잘 알려진 암 관련 유전자발현데이터이인 림프종 데이터에 대하여, MLP와 KNN을 이용한 분류를 해 보았다. 실험 걸과 총합 상관관계를 가지는 특징 집합이 일반적인 순위-기반 방식의 특징 집합에 비하여 높은 분류 인식률을 보여주었다.
Journal of Scientific & Technological Knowledge Infrastructure
/
s.12
/
pp.52-57
/
2003
바이오인포매틱스 시스템은 생명공학, 의학, 약학 등의 바이오인포매틱스 관련 산.학.연 연구자들의 연구개발의 기반이 되는 대용량의 생물정보를 효율적으로 저장하는 데이터베이스 구축 및 운영에 필요한 검색 처리 및 분석 시스템을 구축하는 정보인프라로서 21세기 가장 각광 받는 분야로 자리잡고있다. 최근 기하급수적으로 증가하고 있는 유전정보와 특정그룹이나 개인별 유전자 변화와 질병 감수성과의 관계 및 특정 질병과 관련된 유전자에 대한 생물학적 2차, 3차 분석정보 등 바이오인포매틱스 연구의 확대 필요성이 증가하고 있으나, 대부분의 생명공학 관련 산.학.연 연구자들은 연구분야에 적합한 IT기술을 적용할 수 있는 적절한 방법을 보유하고 있지못한 실정이다.
Seo, Young-woo;Joo, Moon-il;Huh, Gyung Hye;Kim, Hee-cheol
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2017.10a
/
pp.602-604
/
2017
As human life span has increased, people have wanted to live healthier desires. Especially Korea has rapidly entered an aging society, leading to the burden of medical expenses to the increase of disease accompanying aging. To alleviate the burden of medical expenses, prediction and prevention are important rather than treatment of diseases. It is possible to predict and prevent diseases by measuring individual genetic information. In order to utilize individual's genetic information Korea's genetic information is grasped through SNP (800 thousand) and GWAS optimized for the discovery of genetic factors of phenotype and disease of Koreans, The genetic information of each individual is analyzed in the genetic (constitutional) characteristics of the individual. In this thesis we develop a classification index so that we can classify populations of specific chronic diseases (obesity, diabetes or cardiovascular system). Try to develop health care services to manage custom diet and exercise associated with chronic illness.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.769-770
/
2009
본 논문에서는 이상 표식 유전자를 사용하는 기존 분석방법과 달리, 두 유전자 사이의 관계를 측정하여 정상 클래스와 암 클래스에서의 상관관계가 변화된 정도를 분석하여 차이가 두드러지는 유전자 쌍(gene pair)을 질병 분류자(classifier)로 선택하는 방법을 제시한다. 제안한 암 분류 방법의 실험 결과, 소수의 분류자를 선택하여 높은 정확도로 암을 분류함으로써 그 유용성을 검증하였다.
Journal of the Korea Society of Computer and Information
/
v.15
no.12
/
pp.197-207
/
2010
Using a variety of data-mining methods on high-throughput cDNA microarray data, the level of gene expression in two different tissues can be compared, and DEG(Differentially Expressed Gene) genes in between normal cell and tumor cell can be detected. Diagnosis can be made with these genes, and also treatment strategy can be determined according to the cancer stages. Existing cancer classification methods using machine learning select the marker genes which are differential expressed in normal and tumor samples, and build a classifier using those marker genes. However, in addition to the differences in gene expression levels, the difference in gene-gene correlations between two conditions could be a good marker in disease diagnosis. In this study, we identify gene pairs with a big correlation difference in two sets of samples, build gene classification modules using these gene pairs. This cancer classification method using gene modules achieves higher accuracy than current methods. The implementing clinical kit can be considered since the number of genes in classification module is small. For future study, Authors plan to identify novel cancer-related genes with functionality analysis on the genes in a classification module through GO(Gene Ontology) enrichment validation, and to extend the classification module into gene regulatory networks.
생의학 분야 문헌의 양이 빠르게 증가함에 따라, 생의학 연구자들이 필요로 하는 정보를 얻기가 어렵게 되었다. 이를 해결하기 위해, 인간-컴퓨터 상호작용 분야에서는 생의학 문헌 검색 시스템, 또는 생의학 문헌의 정보 추출 시스템 등에 대한 연구가 진행되고 있다. 본 논문에서는 생의학 문헌으로부터 정보를 자동으로 추출하기 위한 관계정보 추출 시스템에 대해 소개한다. 소개하는 시스템은 크게 요약 수집 모듈, 관계 추출 모듈, 관계 가시화 모듈로 구성되어 있다. 우선, 요약 수집 모듈에서는 특정 주제의 문헌들을 검색 및 수집한다. 그리고, 관계 추출 모듈에서는 수집된 문헌들에 대해서, 단백질/유전자 등의 생물학 개체를 인식하고, 구문분석을 통하여 인식된 개체들 사이의 관계를 추출한다. 마지막으로, 관계 가시화 모듈에서는 추출된 관계를 통합하여 네트워크 형태로 가시화한다. 이 시스템은 생물학 실험 이전의 문헌 기반 타당성 검사, 단백질-단백질 상호작용 또는 특정 질병과 유전자의 조절관계 분석, 또는 대용량 문헌 처리를 통한 패스웨이 데이터베이스 구축 등에 활용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.