• Title/Summary/Keyword: 유전자-신경망

Search Result 200, Processing Time 0.026 seconds

A Learning Effect Using the Neural Network Controller Based on Genetic Algorithms (유전자 알고리즘 기반 신경망 제어기를 이용한 학습효과)

  • Yoon, Yeo-Chang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.477-480
    • /
    • 2005
  • 본 논문에서는 신경망과 유전자 알고리즘의 장점을 결합하고, 개선된 유전자 알고리즘 기반의 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 살펴 본다. 유전자 알고리즘을 이용한 신경망 학습은 비선형 함수를 이용하여 발생시킨 모의 자료를 통하여 수행하고 학습 수렴의 정도와 학습 속도 등을 비교할 수 있는 모의실험 결과를 일반 신경망 학습 결과와 함께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 신경망 제어기가 일반 신경망 학습 결과보다 수렴 정확도 및 학습 속도에서 더 좋은 결과를 나타내 주고 있다.

  • PDF

A Comparison on the Learning Effect of Simulated Nonlinear Data Using a Modified Generic and Backpropagation Algorithm (개선된 유전자 알고리즘과 역전파 신경망 알고리즘을 이용한 비선형 모의자료의 학습비교)

  • Yoon, Yeo-Chang
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.694-696
    • /
    • 2005
  • 본 논문에서는 개선된 유전자 알고리즘과 역전파 신경망 알고리즘의 특징을 살펴보고, 비선형 모의자료를 이용하여 개선된 유전자 알고리즘 기반의 신경망 학습 효과와 역전파 신경망 알고리즘을 이용한 신경망 학습 효과를 비교해 본다. 유전자 알고리즘을 이용한 신경망 학습에는 개선된 신경망 제어기를 이용한다. 역전파 알고리즘을 이용한 신경망 학습에는 일반화 성능향상을 위한 인자들의 결합효과를 이용한다. 모의실험을 통하여 두 가지의 학습에서 학습 수령의 정도와 학습 속도 등을 비교하는 모의실험 결과를 개선된 유전자 알고리즘과 신경망 알고리즘의 학습 결과와 항께 제시한다. 모의실험의 결과로서 유전자 알고리즘을 적용한 개선된 신경망 제어기를 통한 학습 결과가 일반 신경망 학습 결과보다 초기 가중값을 작은 범위에서 발생시킬 때 수렴 정확도 및 학습 속도에서 좋은 결과를 나타내 주고 있다.

  • PDF

Neural Network Pair with Negatively Correlated Genes for Cancer Classification (암의 분류를 위한 음의 상관관계 유전자의 신경망 쌍)

  • 원홍희;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.359-361
    • /
    • 2003
  • 정확한 암의 분류는 암의 진단 및 치료에 있어 매우 중요하지만, 암을 진단하기 위한 기존의 여러 방법들은 종종 불완전한 결과를 도출한다. 최근의 마이크로어레이 기술에 기반한 분자 수준의 진단은 정확하고 객관적이며 체계적인 암의 분류를 위한 방법론을 제시해준다. 유전자 발현 데이터는 일반적으로 수천개 이상의 유전자를 포함하는데, 유전자 발현 데이터의 모든 유전자가 암과 관련이 있는 것이 아니므로 정확한 암을 분류하기 위하여 중요한 유전자만을 추출하는 것이 바람직하다. 본 논문에서 음의 상관관계를 갖는 두 개의 이상적인 유전자 벡터를 정의한 후 이와 유사한 정도를 기준으로 중요한 유전자 집단을 추출하고, 각각을 신경망으로 학습하여 결합하는 신경망 쌍을 제안한다. 실험 결과는 음의 상관관계를 갖는 두 개의 유전자 집단이 암의 클래스를 잘 구분할 수 있음을 보여주었다. 이 유전자 집단을 특징으로 하여 각각 학습한 신경망을 베이시안 방법으로 결합한 결과, 벤치마크 데이터에 대하여 신경망 쌍이 개별 분류기에 비해 우수한 성능을 보임을 확인하였다.

  • PDF

신경망 이론과 유전자 기법에 의한 노심장전모형 최적화 기법 개발

  • 장창선;김창효
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.38-43
    • /
    • 1997
  • 이 논문의 목적은 신경망 이론에 의한 노심특성평가 모델과 유전자 기법을 써서 가압경수로 노심의 최적화 재장전 모형을 결정하는데 있다. 이를 위해 OLL(Optimization Layer by Layer)신경망을 구축하고 이를 영광 3호기 재장전주기 노심특성(특히 연료집합체 출력분포와 임계붕산농도)을 예측할 수 있도록 훈련하여 영광3호기 재장전주기 특성 해석용 OLL 신경망을 만들었다. 그리고 통상의 유전자 기법을 활용하여 매세대당 150개의 장전모형들을 생산하고 이들을 대상으로 1000세대에 걸친 유전자 기법에 의한 최적화 과정을 통해 영광 3호기 노심의 평형주기 최적 모형을 결정하였다.

  • PDF

Forecasting algorithm using an improved genetic algorithm based on backpropagation neural network model (개선된 유전자 역전파 신경망에 기반한 예측 알고리즘)

  • Yoon, YeoChang;Jo, Na Rae;Lee, Sung Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1327-1336
    • /
    • 2017
  • In this study, the problems in the short term stock market forecasting are analyzed and the feasibility of the ARIMA method and the backpropagation neural network is discussed. Neural network and genetic algorithm in short term stock forecasting is also examined. Since the backpropagation algorithm often falls into the local minima trap, we optimized the backpropagation neural network and established a genetic algorithm based on backpropagation neural network for forecasting model in order to achieve high forecasting accuracy. The experiments adopted the korea composite stock price index series to make prediction and provided corresponding error analysis. The results show that the genetic algorithm based on backpropagation neural network model proposed in this study has a significant improvement in stock price index series forecasting accuracy.

A Study on Design of Evolving Hardware using Field Programmable Gate Array (FPGA를 이용한 진화형 하드웨어 설계 및 구현에 관한 연구)

  • 반창봉;곽상영;이동욱;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.426-432
    • /
    • 2001
  • This paper is implementation of cellular automata neural network system using evolving hardware concept. This system is a living creatures'brain based on artificial life techniques. Cellular automata neural network system is based on the development and the evolution, in other words, it is modeled on the ontogeny and phylogney of natural living things. The phylogenetic mechanism are fundamentally non-deterministic, with the mutation and recombination rate providing a major source of diversity. Ontogeny is deterministic and local physics. Cellular automata is developed from initial cells, and evaluated in given environment. And genetic algorithms take a part in adaptation process. In this paper we implement this system using evolving hardware concept. Evolving hardware is reconfigurable hardware whose configuration si under the control of an evolutionary algorithm. We design genetic algorithm process for evolutionary algorithm and cells in cellular automata neural network for the construction of reconfigurable system. The effectiveness of the proposed system if verified by applying it to Exclusive-OR.

  • PDF

Competitive Co-Evolving Neural Network : Host and Parasites (기생체 숙주 이론 기반의 경쟁 공진화 신경망)

  • 박정은;박민재;오경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.142-144
    • /
    • 2003
  • 유전자 알고리즘을 사용하여 신경망의 가중치를 학습하는 방법은 역전파 알고리즘이 가지는 여러 가지 문제점을 해결하기 위해 제안되었으나, 유전자 알고리즘 역시 전역 탐색이 아니기 때문에 실세계의 데이터에 적용하기 어려운 가장 큰 장애 요소인 지역 최소점 문제를 완벽하게 해결할 수는 없다. 이러한 지역 최소점 문제를 완화하기 위해 본 논문에서는 기생체-숙주 공진화 현상을 기반으로 한 유전자 알고리즘을 사용한 경쟁 공진화 신경망 학습 방법을 제시하고 있다. 경쟁 공진화는 서로 다를 개체간의 경쟁적인 진화를 통해 궁극적으로 보다 적합도가 높은 개체가 생성되는 이론을 기반으로 하고 있다. 이러한 경쟁 공진화를 통한 신경망 가중치의 학습이 일반적인 유전자 알고리즘을 사용하여 신경망을 학습시키는 것보다 더욱 우수한 가중치 집단을 탐색할 수 있음을 두 종류의 기계 학습 데이터를 통해 입증하였다.

  • PDF

Efficient Learning of Neural Network Using an Improved Genetic Algorithm (개선된 유전 알고리즘을 사용한 효율적 신경망 학습)

  • 김형래;김성주;최우경;하상형;조현찬;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.315-318
    • /
    • 2004
  • 최적해 탐색 도구로 널리 알려진 유전 알고리즘을 이용하여 신경망의 학습을 위한 가중치를 탐색하는 방법은 신경망의 학습 방법의 하나로 사용되고 있다. 신경망의 가중치는 일정 시간의 유전자 연산을 수행하게 되면 최적화된 가중치의 값과 유사하게 되는 특징을 지닌다. 이는 유전자 연산 방법에 의해 가중치가 수렴되고 있음을 의미하며, 그 때의 가중치는 일정한 패턴을 지니는 특징을 발견할 수 있다. 이에, 본 논문에서는 탐색된 가중치의 패턴을 보존하기 위한 방법으로 유전자의 일정 부분을 고정한 후 유전자 연산을 수행하는 개선된 학습 방법을 제안하고자 한다. 이를 이용할 경우에 유전자 탐색의 문제점으로 제시되고 있는 탐색 시간을 효율적으로 감소시킬 수 있는 장점이 있다.

  • PDF

Classification of Gene Expression Data Using Membership Function and Neural Network (소속도 함수와 신경망을 이용한 유전자 발현 정보의 분류)

  • 염해영;문영식
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.757-759
    • /
    • 2004
  • 유전자 발현은 유전자가 mRNA와 생체의 기능을 일으키게 하는 단백질을 만들어내는 과정이다. 유전자 발현에 대한 정보는 유전자의 기능을 밝히고 유전자간의 상관 관계를 알아내는데 중요한 역할을 한다. 이러한 유전자 발현 연구를 위한 정보를 대량으로 신속하게 얻을 수 있는 도구가 DNA Chip이다. DNA Chip으로 얻은 수백-수천 개의 데이터는 그 데이터만으로는 의미를 갖지 못한다. 따라서 유전자 발현 정도에 따라 수치적으로 획득된 데이터에서 의미적인 특성을 찾아내기 위해서는 클러스터링 방법이 필요하다. 본 논문에서는 수많은 유전자 데이터 중에서 주요 정보를 포함한 것으로 판단되는 유전자 데이터를 선택하여 특징간을 계산하고 신경망 학습을 이용한 클러스터링하는 알고리즘에 대해서 기술한다.

  • PDF

Study on Water Stage Prediction by Artificial Neural Network and Genetic Algorithm (인공신경망과 유전자알고리즘을 이용한 수위예측에 관한 연구)

  • Yeo, Woon-Ki;Jee, Hong-Kee;Lee, Soon-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1159-1163
    • /
    • 2010
  • 최근의 극심한 기상이변으로 인하여 발생되는 유출량의 예측에 관한 사항은 치수 이수는 물론 방재의 측면에서도 역시 매우 중요한 관심사로 부각되고 있다. 강우-유출 관계는 유역의 수많은 시 공간적 변수들에 의해 영향을 받기 때문에 매우 복잡하여 예측하기 힘든 요소이다. 과거에는 추계학적 예측모형이나 확정론적 예측모형 혹은 경험적 모형 등을 사용하여 유출량을 예측하였으나 최근에는 인공신경망과 퍼지모형 그리고 유전자 알고리즘과 같은 인공지능기반의 모형들이 많이 사용되고 있다. 하지만 유출량을 예측하고자 할 때 학습자료 및 검정자료로써 사용되는 유출량은 수위-유량 관계곡선식으로부터 구하는 경우가 대부분으로 이렇게 유도된 유출량의 경우 오차가 크기 때문에 그 신뢰성에 문제가 있을 것으로 판단된다. 따라서 본 논문에서는 선행우량 및 수위자료로부터 단시간 수위예측에 관해 연구하였다. 신경망은 과거자료의 입 출력 패턴에서 정보를 추출하여 지식으로 보유하고, 이를 근거로 새로운 상황에 대한 해답을 제시하도록 하는 인공지능분야의 학습기법으로 인간이 과거의 경험과 훈련으로 지식을 축적하듯이 시스템의 입 출력에 의하여 연결강도를 최적화함으로서 모형의 구조를 스스로 조직화하기 때문에 모형의 구조에 적합한 최적 매개변수를 추정할 수 있다. 따라서 정확한 예측이 어려운 하천수위를 과거의 자료로 부터 학습된 신경망의 수학적 알고리즘을 통해 유출량의 예측에 적용할 수 있을 것이다. 유전자 알고리즘은 적자생존의 생물학 원리에 바탕을 둔 최적화 기법중의 하나로 자연계의 생명체 중 환경에 잘 적응한 개체가 좀 더 많은 자손을 남길 수 있다는 자연선택 과정과 유전자의 변화를 통해서 좋은 방향으로 발전해 나간다는 자연 진화의 과정인 자연계의 유전자 메커니즘에 바탕을 둔 탐색 알고리즘이다. 즉, 자연계의 유전과 진화 메커니즘을 공학적으로 모델화함으로써 잠재적인 해의 후보들을 모아 군집을 형성한 뒤 서로간의 교배 혹은 변이를 통해서 최적 해를 찾는 계산 모델이다. 따라서 본 연구에서는 인공신경망의 가중치를 유전자 알고리즘에 의해 최적화시킨후 오류역전파알고리즘에 의해 신경망의 학습을 진행하는 모형으로 감천유역의 선산수위표지점의 수위를 1시간~6시간까지 예측하였다.

  • PDF