• Title/Summary/Keyword: 유전자 연산자

Search Result 74, Processing Time 0.018 seconds

Optimization of Fuzzy Set Fuzzy Model by Means of Hierarchical Fair Competition-based Genetic Algorithm using UNDX operator (UNDX연산자를 이용한 계층적 공정 경쟁 유전자 알고리즘을 이용한 퍼지집합 퍼지 모델의 최적화)

  • Kim, Gil-Sung;Choi, Jeoung-Nae;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.204-206
    • /
    • 2007
  • In this study, we introduce the optimization method of fuzzy inference systems that is based on Hierarchical Fair Competition-based Parallel Genetic Algorithms (HFCGA) and information data granulation, The granulation is realized with the aid of the Hard C-means clustering and HFCGA is a kind of multi-populations of Parallel Genetic Algorithms (PGA), and it is used for structure optimization and parameter identification of fuzzy model. It concerns the fuzzy model-related parameters such as the number of input variables to be used, a collection of specific subset of input variables, the number of membership functions, the order of polynomial, and the apexes of the membership function. In the optimization process, two general optimization mechanisms are explored. The structural optimization is realized via HFCGA and HCM method whereas in case of the parametric optimization we proceed with a standard least square method as well as HFCGA method as well. A comparative analysis demonstrates that the proposed algorithm is superior to the conventional methods. Particularly, in parameter identification, we use the UNDX operator which uses multiple parents and generate offsprings around the geographic center off mass of these parents.

  • PDF

A Study on Face Recognition using a Hybrid GA-BP Algorithm (혼합된 GA-BP 알고리즘을 이용한 얼굴 인식 연구)

  • Jeon, Ho-Sang;Namgung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.552-557
    • /
    • 2000
  • In the paper, we proposed a face recognition method that uses GA-BP(Genetic Algorithm-Back propagation Network) that optimizes initial parameters such as bias values or weights. Each pixel in the picture is used for input of the neuralnetwork. The initial weights of neural network is consist of fixed-point real values and converted to bit string on purpose of using the individuals that arte expressed in the Genetic Algorithm. For the fitness value, we defined the value that shows the lowest error of neural network, which is evaluated using newly defined adaptive re-learning operator and built the optimized and most advanced neural network. Then we made experiments on the face recognition. In comparison with learning convergence speed, the proposed algorithm shows faster convergence speed than solo executed back propagation algorithm and provides better performance, about 2.9% in proposed method than solo executed back propagation algorithm.

  • PDF

Optimization of the Satellite Mission Scheduling Using Genetic Algorithms (유전 알고리즘을 이용한 위성 임무 스케줄링 최적화)

  • Han, Soon-Mi;Baek, Seung-Woo;Jo, Seon-Yeong;Cho, Kyeum-Rae;Lee, Dae-Woo;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.12
    • /
    • pp.1163-1170
    • /
    • 2008
  • A mission scheduling optimization algorithm according to the purpose of satellite operations is developed using genetic algorithm. Satellite mission scheduling is making a timetable of missions which are slated to be performed. It is essential to make an optimized timetable considering related conditions and parameters for effective mission performance. Thus, as important criterions and parameters related to scheduling vary with the purpose of satellite operation, those factors should be fully considered and reflected when the satellite mission scheduling algorithm is developed. The developed algorithm in this study is implemented and verified through a comprehensive simulation study. As a result, it is shown that the algorithm can be applied into various type of the satellite mission operations.

An Efficient Evolutionary Algorithm for Optimal Arrangement of RFID Reader Antenna (RFID 리더기 안테나의 최적 배치를 위한 효율적인 진화 연산 알고리즘)

  • Soon, Nam-Soon;Yeo, Myung-Ho;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.40-50
    • /
    • 2009
  • Incorrect deployment of RFID readers occurs reader-to-reader interferences in many applications using RFID technologies. Reader-to-reader interference occurs when a reader transmits a signal that interferes with the operation of another reader, thus preventing the second reader from communicating with tags in its interrogation zone. Interference detected by one reader and caused by another reader is referred to as a reader collision. In RFID systems, the reader collision problem is considered to be the bottleneck for the system throughput and reading efficiency. In this paper, we propose a novel RFID reader anti-collision algorithm based on evolutionary algorithm(EA). First, we analyze characteristics of RFID antennas and build database. Also, we propose EA encoding algorithm, fitness algorithm and genetic operators to deploy antennas efficiently. To show superiority of our proposed algorithm, we simulated our proposed algorithm. In the result, our proposed algorithm obtains 95.45% coverage rate and 10.29% interference rate after about 100 generations.