• 제목/요약/키워드: 유전자 상호작용 네트워크

검색결과 42건 처리시간 0.025초

3차원 유전자 발현 데이터에서의 시간 관계 규칙을 이용한 유전자 상호작용 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Temporal Relation Rules from 3-Dimensional Gene Expression Data)

  • ;박진형;이헌규;류근호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 추계학술발표대회
    • /
    • pp.340-343
    • /
    • 2008
  • 유전자들은 복잡한 상호작용을 통해 세포의 기능이 조절된다. 상호작용하는 유전자 그룹들을 유전자 조절 네트워크라고 한다. 기존의 유전자 조절 네트워크는 2D microarray 데이터를 이용하여 시간의 흐름에 따른 유전자간의 상호작용을 알 수가 없었다. 이 논문에서는 시간의 변화에 따른 유전자들 간의 조절관계를 살펴 볼 수 있는 조절네트워크 모델링의 방법을 제시한다. 유전자의 발현양을 표시하기 위해 이진 이산화 방법을 사용하였고 3D microarray 데이터에서 유전자 발현 패턴을 찾기 위해 Cube mining 알고리즘을 적용하였고, 유전자간의 관계를 밝히기 위해 시간 관계 규칙탐사 기법을 사용하여 유전자들 간의 시간 관계를 포함한 유전자 조절네트워크를 구축하였다. 이 연구는 시간의 흐름에 따른 유전자간의 상호작용을 알 수 있으며, 모델링된 조절 네트워크를 이용하여 기능이 아직 발견되지 않은 유전자들의 기능을 예측 할 수 있다.

유전자 온톨로지와 연계한 단백질 상호작용 네트워크 시각화 시스템 (Protein Interaction Network Visualization System Combined with Gene Ontology)

  • 최윤규;김석;이관수;박진아
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제36권2호
    • /
    • pp.60-67
    • /
    • 2009
  • 단백질 상호작용 네트워크는 어떤 단백질들 간에 상호 작용 관계가 있는지를 네트워크 형태로 나타낸 것이며 단백질 상호작용을 발견하거나 분석하는 것은 생명 공학에서 중요한 연구분야이다. 본 논문에서는 방대한 단백질 상호작용 데이터를 유전자 온톨로지와 연계한 시각화를 통하여 효과적으로 직관을 얻을 수 있는 효율적인 단백질 상호작용 네트워크 분석시스템을 다룬다. 단백질 상호작용 네트워크는 데이터 양이 매우 방대하기 때문에 이를 효율적으로 분석하는 방법과 효과적인 시각화 기법이 요구된다. 본 연구에서는 이를 위하여 동적이고 상호작용 가능한 그래프와 관심 노드와 그 주변 노드를 표시하며 점진적으로 탐색할 수 있는 컨텍스트 기반 탐색 기법을 도입하였다. 이 밖에도 특화된 기능으로써 단백질 상호작용과 유전자 온톨로지 간의 빠르고 자유로운 상호참조 기능과 최소 공통 조상을 사용한 유전자 온톨로지 분석 기능 등을 지원한다. 인터페이스 측면에서는 상호참조 기능을 효과적으로 사용하게 하기 위하여 유전자 온톨로지 그래프와 단백질 상호작용의 시각화 결과를 2차원 윈도우로 나란히 보여주는 인터페이스를 디자인 하였다.

대규모 유전자 상호작용 네트워크 추론을 위한 클라이언트-서버 시스템 구조 (Client-Server System Architecture for Inferring Large-Scale Genetic Interaction Networks)

  • 김영훈;이필현;이도헌
    • Bioinformatics and Biosystems
    • /
    • 제1권1호
    • /
    • pp.38-45
    • /
    • 2006
  • 본 논문은 베이지안 네트워크를 기반으로 대규모 유전자 상호작용 네트워크를 추론하기 위한 클라이언트-서버 시스템 구조를 제시한다. 유전체 수준(genome-wide)의 대규모 유전자 상호작용 네트워크를 베이지안 네트워크 형태로 추론하기 위해서는 병렬 서버를 이용하더라도 통상 수십시간이 소요된다. 따라서, 일반적인 대화형(interactive) 독자(standalone) 시스템 구조보다는 배치형(batch) 분산(distributed) 시스템 구조가 적합하다. 본 논문에서는 그와 같은 상황에 적합한 느슨한 연결의 (loosely-coupled) 클라이언트-서버 시스템을 구현할 결과를 기술한다. 유전자 상호작용 네트워크 추론은 크게 두 단계로 나누어진다. 첫째로, 생물주석정보(biological annotation)과 유전자 발현정보(expression data)를 사용하여, 전체 유전자 집단을 서로 중복이 가능한 모듈들로 나누며, 둘째로, 각각의 모듈들에 대해 독립적인 베이지안 학습을 수행하여 추론결과를 얻고, 각 모듈들이 공통으로 포함하는 유전자를 사용하여 각 모듈의 추론결과들을 하나로 통합한다.

  • PDF

네트워크 기반 면역관련 유전자의 DNA 메탈화 모티프 분석 (Analysis of DNA Methylation Motif for Immune Related Genes Based on Networks)

  • 이지후;류제운;김학용
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.357-358
    • /
    • 2012
  • 후성유전은 DNA 염기서열이 변화하지 않은 상태에서 특별한 후성적 조절 기전에 의해 유전자의 발현 양상이 변하는 현상이다. 후성적 조절 기전에는 DNA의 메틸화(methyaltion)와 히스톤 단백질의 변형(modification), non coding RNA에 의한 조절 등이 포함되는데, 이 중 DNA 메틸화 정도에 대한 패턴 분석은 후성유전을 이해하는 중요한 접근방법 중 하나이다. 네트워크와 DNA 메틸화 분석을 위하여 면역관련 264개 유전자들의 -2000bp ~ +200bp사이에 있는 DNA 염기 서열 정보를 추출하였다. 또한 면역관련 단백질들의 상호작용 정보를 이용하여 네트워크를 구축하고 여기에 메틸화 정보를 적용하여 상호작용과 메틸화 모티프와의 관계를 분석하였다. 메틸화 모티프 정보를 적용한 단백질 네트워크에서는 기존 단백질 네트워크보다 더 복잡한 구조를 이루고 있었다. 이러한 구조는 동일한 메틸화 모티프들이 여러 유전자들의 활성을 조절할 것으로 사료된다. 단백질 상호작용 네트워크에 모티프를 적용한 분석은 새로운 후성유전학적 연구를 위한 접근 방법으로 이용될 수 있을 것이다.

  • PDF

네트워크 기반 면역 및 발생관련 최적 miRNA 예측 (Prediction of highly reliable miRNAs related immune and development based on network)

  • 이지후;이현재;김학용
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2013년도 춘계 종합학술대회 논문집
    • /
    • pp.373-374
    • /
    • 2013
  • MicroRNA(miRNA)는 단일가닥 RNA 분자로서 유전자 발현을 제어하는 조절인자이다. miRNA에 의해 조절되는 대부분 유전자는 다수의 miRNA에 의하여 조절되어질 수 있기 때문에 최적 miRNA의 선별은 매우 중요하다. 본 연구에서는 먼저 면역 및 발생관련 유전자 상호작용 네트워크를 구축하였다. 이 네트워크에 miRNA 정보를 추가함으로써 유전자간의 상호작용 뿐만아니라 유전자와 miRNA의 상호작용을 분석할 수 있는 기반을 조성하였다. 복잡한 네트워크를 단순화시켜 기능 모듈과 구조 모듈을 도출하고 이로부터 핵심 유전자를 조절하는 최적 miRNA를 예측하였다.

  • PDF

소의 경제형질 관련 유전자 네트워크 분석 시스템 구축 (Construction of Gene Network System Associated with Economic Traits in Cattle)

  • 임다정;김형용;조용민;채한화;박종은;임규상;이승수
    • 생명과학회지
    • /
    • 제26권8호
    • /
    • pp.904-910
    • /
    • 2016
  • 가축의 경제형질은 대부분 복합형질 상태이며, 많은 유전자와 생물대사회로에 의해 조절된다. 시스템 생물학은 생명현상을 하나의 복합체로 가정하고, 형질에 관여하는 유전자들에 대한 기능적 관계를 분석하는 학문이다. 유전자 네트워크는 시스템 생물학의 하나의 연구분야로써, 유전자 기능의 상관관계를 지도화하여 오믹스 데이터를 통합 분석하여 해석한다. 유전자 네트워크는 단백질-단백질 상호작용, 공발현, 조절인자, 유전자형 기반으로 다양한 유전자의 기능적 상호작용을 표현할 수 있다. 또한, 네트워크를 구성하기 위해서는 유전자 간 연결 정도에 가중치를 두거나, 인접한 유전자 수 계산 등의 네트워크 토폴로지 알고리즘이 적용된다. 가축에서는 이러한 연구가 단형질에 대한 유전자 발현, 단백질 상호작용 등에 국한되어 있는 실정이다. 본 논문에서는 유전자 공발현 네트워크와 단백질-단백질 상호작용 네트워크 분석법을 확립하고 소의 102개 경제형질에 대하여 유전자 네트워크 분석 결과에 대한 데이터베이스를 구축하였다. 102개의 경제형질은 Animal Trait Ontology (ATO) 명명법에 의하여 분류하여 제공하였다. 각 형질에 포함된 유전자 리스트는 Animal QTL database에서 제공하는 양적유전형질좌위의 물리적 위치에 존재하는 유전자군을 추출하였다. 유전자 공발현 네트워크는 R의 WGCNA 패키지를 활용하였으며, 단백질-단백질 상호작용 네트워크는 Human Protein Reference Database에서 사람과 소의 orthologous group에 포함된 유전자를 대상으로 단백질 상호작용 관계를 규명하였다. 네트워크 분석 결과는 관계형 테이블로 구축하였으며, 구축한 데이터베이스를 관련 연구진에게 공유하기 위하여 웹 기반의 유전자 네트워크 가시화 시스템을 구현하였다(http://www.nabc.go.kr/cg). 웹 데이터베이스 구현을 위하여 Ontle 프로그램을 활용하여 다양한 방식으로 유전자 네트워크 가시화 작업을 수행하였다. 이 시스템을 통하여 사용자는 관련 형질의 후보 유전자군 탐색, 유전자 네트워크 분석 결과, 유전자 사이의 기능적 연결관계를 손쉽게 살펴볼 수 있게 될 것이다.

빈발 유전자 발현 패턴과 연쇄 규칙을 이용한 유전자 조절 네트워크 구축 (Constructing Gene Regulatory Networks using Frequent Gene Expression Pattern and Chain Rules)

  • 이헌규;류근호;정두영
    • 정보처리학회논문지D
    • /
    • 제14D권1호
    • /
    • pp.9-20
    • /
    • 2007
  • 유전자들의 그룹은 복잡한 상호작용들을 통해 세포의 기능이 조절되며 이러한 상호작용을 하는 유전자 그룹들을 유전자 조절 네트워크 (GRNs: Gene Regulatory Networks)라고 한다. 이전의 유전자 발현 분석 기법인 군집화와 분류는 단지 상동성에 의한 유전자들 사이의 소속을 결정하는 데에는 유용하나 분자 활동에서의 같은 클래스에서 발견되어지는 유전자들 사이의 조절 관계를 식별할 수 없다. 더욱이 유전자들이 어떻게 연관되는 지와 유전자들이 서로 어떻게 조절하는지에 대한 매커니즘의 이해가 필요하다. 따라서 이 논문에서는 시계열 마이크로어레이 데이터로부터의 유전자들의 조절 관계를 발견하기 위해서 빈발 패턴 마이닝과 연쇄 규칙을 이용한 새로운 접근법을 제안하였다. 이 기법에서는 먼저, 빈발 패턴 마이닝 적용을 위한 적절한 데이터 변환 방법을 제안하였고 FP-growth을 이용하여 유전자 발현 패턴들을 발견한다. 그런 다음, 연쇄 규칙을 이용하여 빈발한 유전자 패턴들로부터 유전자 조절 네트워크를 구축하였다. 마지막으로 제안된 기법의 검증은 공개된 유전자들의 조절 관계와 실험 결과의 일치함을 보임으로써 평가하였다.

유전자 알고리즘으로 학습한 베이지안 네트워크에 기초한 질병 모듈 추론 (Inference of Disease Module using Bayesian Network by Genetic Algorithm)

  • 정다예;여윤구;안재균;박상현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1117-1120
    • /
    • 2013
  • 사람의 질병은 여러 요인의 복합적인 작용으로 발생하는데 이 중 유전적인 요인에는 유전자 간의 상호작용을 들 수 있다. 마이크로어레이(Microarray) 데이터로부터 유전자의 활성화 및 억제 관계를 밝히려는 다양한 시도는 계속되어왔다. 그러나 마이크로어레이 자체가 갖는 불안정성과 실험조건 수의 제약이 커다란 장애가 되어 왔다. 이에 생물학적 사전 지식을 포함하는 방법들이 제안되었다. 본 논문에서는 질병과 관련된 유전자 간의 상호작용의 집합을 질병 모듈이라 정의하고 이를 유전자 알고리즘으로 학습한 베이지안 네트워크(Bayesian network)로 추론하는 방법을 제안한다.

온톨로지를 이용한 단백질 상호작용 네트워크의 개념화 (An Ontology Based Approach for Conceptualizing Protein Interaction Networks)

  • 최재훈;박선희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (2)
    • /
    • pp.787-789
    • /
    • 2003
  • 본 논문에서는 생물체의 세포에 존재하는 방대한 단백질들 사이의 복잡한 상화작용 관계 네트워크를 개념화하기 위한 방법을 제안한다. 일반적으로 하나의 단백질은 세포의 특정한 구성요소로서 몇 개의 생물학적 작용에 참여하며 고유의 분자 기능을 수행하게 된다. 즉, 하나의 상호작용 관계 네트워크에 포함된 각각의 단백질들은 구성요소(Cellular Component), 생물학적 작용(Biological Process), 그리고 분자 기능(Molecular Function) 3가지 특징으로 개념화할 수 있다. 또한, 비슷한 특징으로 개념화되는 단백질들은 서로 클러스터링될 수 있기 때문에 단백질 상호작용 네트워크를 일반적인 의미의 개념 네트워크로 표현할 수 있다. 여기서, 단백질 특징을 개념화하기 위해 사용되는 표준개념과 이 개념들 사이의 관계를 정의하는 유전자 온톨로지(Gene Ontology)가 이용된다.

  • PDF

단백질 상호작용 네트워크를 위한 개념 기반 필터링 (A Concept-Based Filtering for Protein-Protein Interaction Networks)

  • 최재훈;박종민;정재영;박선희
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.277-279
    • /
    • 2004
  • 본 논문은 생명체 세포에 존재하는 방대한 단백질들 사이의 상호작용 관계들로 표현되는 네트워크에서 사용자가 관심 있는 부분 네트워크를 개념적으로 필터링 할 수 있는 방법을 설계하고 구현하였다. 이 방법은 1) 유전자 온톨로지를 이용하여 필터링 조건을 입력하고, 2) 이 조건을 만족하는 단백질들을 네트워크에서 필터링 한 다음, 3) 이 단백질들 중 사용자가 관심이 있는 단백질만 선택하고, 4) 선택된 단백질들과 일정 거리에 있는 상호작용 관계들을 필터링 함으로서 수행된다. 네트워크 필터링은 생물학자가 방대한 네트워크에서 자신이 관심이 있는 단백질들과 이들 사이의 관계에만 집중할 수 있도록 지원한다.

  • PDF