• Title/Summary/Keyword: 유입수 농도

Search Result 1,342, Processing Time 0.019 seconds

Origin and Source Appointment of Sedimentary Organic Matter in Marine Fish Cage Farms Using Carbon and Nitrogen Stable Isotopes (탄소 및 질소 안정동위원소를 활용한 어류 가두리 양식장 내 퇴적 유기물의 기원 및 기여도 평가)

  • Young-Shin Go;Dae-In Lee;Chung Sook Kim;Bo-Ram Sim;Hyung Chul Kim;Won-Chan Lee;Dong-Hun Lee
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.99-110
    • /
    • 2022
  • We investigated physicochemical properties and isotopic compositions of organic matter (δ13CTOC and δ 15NTN) in the old fish farming (OFF) site after the cessation of aquaculture farming. Based on this approach, our objective is to determine the organic matter origin and their relative contributions preserved at sediments of fish farming. Temporal and spatial distribution of particulate and sinking organic matter(OFF sites: 2.0 to 3.3 mg L-1 for particulate matter concentration, 18.8 to 246.6 g m-2 day-1 for sinking organic matter rate, control sites: 2.0 to 3.5 mg L-1 for particulate matter concentration, 25.5 to 129.4 g m-2 day-1 for sinking organic matter rate) between both sites showed significant difference along seasonal precipitations. In contrast to variations of δ13CTOC and δ15NTN values at water columns, these isotopic compositions (OFF sites: -21.5‰ to -20.4‰ for δ13 CTOC, 6.0‰ to 7.6‰ for δ15NTN, control sites: -21.6‰ to -21.0‰ for δ13CTOC, 6.6‰ to 8.0‰ for δ15NTN) investigated at sediments have distinctive isotopic patterns(p<0.05) for seawater-derived nitrogen sources, indicating the increased input of aquaculture-derived sources (e.g., fish fecal). With respect to past fish farming activities, representative sources(e.g., fish fecal and algae) between both sites showed significant difference (p<0.05), confirming predominant contribution (55.9±4.6%) of fish fecal within OFF sites. Thus, our results may determine specific controlling factor for sustainable use of fish farming sites by estimating the discriminative contributions of organic matter between both sites.

Rural Migration and Changes of Agricultural Population (농민이촌(農民離村)과 농업인구(農業人口)의 변화(變化))

  • Wu, Tsong-Shien;Kim, Kuong-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.1 no.1
    • /
    • pp.91-116
    • /
    • 1974
  • Taiwan agricultural development in the last decade has not been changed much since the accomplishment of land reform program. This is mainly due to the rapid development taken place within industry that agricultural development can not keep pace with. The increasing gap of rural-urban income discrepancy has caused socio-psychological unstability among rural people and inspire wants of out-migration. From 1961 to 1970, population of the ten largest cities showed an annual growth rate of 4.05%, while the population of the remainder of Taiwan showed 2.06%. Assuming the natural increase rate of these two population sections are similar, the difference of rural and urban annual growth rate can be at tributed to the flow of people from rural to urban sectors. The main objective of this paper is to identify the amount of agricultural out-migration and its impact on agricultural development and agricultural extension programs. Specifically, the objectives are to examine (1) rural-urban population composition (2) rural out-migration estimation (3) changes of agricultural population, and (4) implications for agricultural development and extension programs Some of the important findings are listed below; (1) The average agricultural out migration of the period 1960-1969 is estimated at around 60,000 per year. Take Tainan prefecture for example, the Male-Female Migration Ratio is 0.39 for age 20-24, 0.55 for age 25-29, 0.90 for 30-34. It is understood between age 20 and 34, the rural female migration rate is higher than the rural male. (2) Based on the population growth rate of 1950-1969, agricultural population is projected for the period of 1953 to 1989. By 1978, the agricultural population will reach its peak and begin to dedaine from 1980. The projected agricultural population in 1989 is 5,847,566 which occupies 29% of the Taiwan total population. (3) Assuming area of cultivated land keep unchanged as 905,263 ha. in 1970, and tif we can eliminate all 72% of part-time farms, then the average farm acreage for hose full-time farms will be increased to 3.6 hactares. This is unlikely to happen before 1989 without the government interference. (4) Less than 10% of adult farmer s of age 25-64 in 1969 enrolled in Farm Discussion Club, only 5% of adult farm women enrolled in Home Economics Club, and 5% of rural youth enrolled in 4-H Club. These statistics show a fact that only few farmers are reached by extension workers. Based on findings in this paper, some important suggestions are listed for future agricultural development. (1) Improve agricultural structure by decreasing agricultural population (a) Encourage farmers with less than 0.5 ha. of land to seek jobs outside of agriculture (b) Encourage joint cultivation and farm mechanization (c) Discourage rural migrants to Keep farm land (d) Provide occupational guidance program through extension education programs (2) Establish future farmers settlement project to assure rural youth have enough resources for farming. (3) An optimum Population policy should be integrated into rural socio-economic development and national development programs.

  • PDF