• Title/Summary/Keyword: 유연 디스크

Search Result 75, Processing Time 0.023 seconds

Non-contact Vibration Suppression of a Rotating Flexible Disk (회전 유연 디스크의 비 접촉 진동 억제)

  • Um, Yo-Han;Lee, Ho-Ryul;Lee, Sung-Ho;Rhim, Yoon-Chul
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.169-174
    • /
    • 2005
  • Current information storage devices read/write data on the rotating disk. The axial vibration of a rotating disk should be suppressed for the successful operation of the device. Information storage devices widely used in these days adopt relatively thick disk which is stiff enough to suppress axial vibration under allowable limit. However, the thickness of the disk is going to be thinner and thinner as the small form factor of the devices is getting preferred by the consumer. In this study, a stabilizer system, which is composed with 8 air bearings, is proposed for suppressing the axial vibration of a $95{\mu}m$ thick PC disk in a non-contacting manner. The performance of the stabilizer system is simulated by numerical computation and then confirmed its results through a series of experiment. A thin and flexible disk has various vibration modes when it rotates in high speed. The stabilizer system generates positive as well as negative pressure due to the rotation of flexible disk so that the force due to the pressure distribution pushes and pulls rotating disk in a non-contacting manner. The balance between positive and negative pressure forces can be obtained by adjusting the area and the slope of the air bearing surface. The axial vibration of the flexible disk of 120mm diameter is suppressed successfully from over $1000{\mu}m$ to $30{\mu}m$ peak-to-peak value at the rotational speed of 5,000rpm.

  • PDF

Effect of Flexible Cable and Friction Force of Small Form Factor Hard Disk Drive (소형 하드디스크 드라이브의 유연 케이블과 마찰력에 의한 영향에 대한 연구)

  • Kim, Seok-Hwan;Lee, Yong-Hyun;Kim, Ki-Hoon;Lee, Sang-Jik;Park, Young-Pil;Park, No-Cheol;Park, Kyoung-Su;Jung, Moon-Gyo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.5 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • In recent years, the demand for portable digital devices such as cellular phone, digital camera, and MP3 player has been largely increased. To meet the requirements of such portable applications the information storage devices with smaller size, higher capacity, and lower power consumption are needed. A small form factor (SFF) HDD using a load/unload (L/UL) system is one of the appropriate alternatives to satisfy these requirements. Due to complexity of L/UL process and mechanism, it is required to investigate for better understanding the effects of design parameters. Among the various design parameters, flexible cable and friction force on the L/UL ramp become important to the dynamic characteristics of L/UL process as the system is miniaturized. The program for L/UL simulation which considers the effect of flexible cable and L/UL ramp is needed. Unfortunately, there is hardly any commercial program for the L/UL simulation except the Computer Mechanics Laboratory (CML) air bearing design program and the CML L/UL simulation code. Furthermore, the design parameters such as flexible cable and the L/UL ramp are not considered in the CML L/UL simulation code. So we embody the L/UL simulation considering flexible cable and an L/UL ramp by using the ANSYS/LS-DYNA. In this thesis, the effects of flexible cable and friction force on the dynamic characteristics and the performances of the L/UL process are studied. Numerical simulation and related experiments are carried out and compared each other.

  • PDF

Design and Implementation of a Concuuuency Control Manager for Main Memory Databases (주기억장치 데이터베이스를 위한 동시성 제어 관리자의 설계 및 구현)

  • Kim, Sang-Wook;Jang, Yeon-Jeong;Kim, Yun-Ho;Kim, Jin-Ho;Lee, Seung-Sun;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.4B
    • /
    • pp.646-680
    • /
    • 2000
  • In this paper, we discuss the design and implementation of a concurrency control manager for a main memory DBMS(MMDBMS). Since an MMDBMS, unlike a disk-based DBMS, performs all of data update or retrieval operations by accessing main memory only, the portion of the cost for concurrency control in the total cost for a data update or retrieval is fairly high. Thus, the development of an efficient concurrency control manager highly accelerates the performance of the entire system. Our concurrency control manager employs the 2-phase locking protocol, and has the following characteristics. First, it adapts the partition, an allocation unit of main memory, as a locking granule, and thus, effectively adjusts the trade-off between the system concurrency and locking cost through the analysis of applications. Second, it enjoys low locking costs by maintaining the lock information directly in the partition itself. Third, it provides the latch as a mechanism for physical consistency of system data. Our latch supports both of the shared and exclusive modes, and maximizes the CPU utilization by combining the Bakery algorithm and Unix semaphore facility. Fourth, for solving the deadlock problem, it periodically examines whether a system is in a deadlock state using lock waiting information. In addition, we discuss various issues arising in development such as mutual exclusion of a transaction table, mutual exclusion of indexes and system catalogs, and realtime application supports.

  • PDF

Effect of Pad Structure and Friction Material Composition on Brake Squeal Noise (제동패드의 구조와 마찰재 조성이 제동 스킬소음에 미치는 영향)

  • Goo, Byeong Choon;Kim, Jae Chul;Lee, Beom Joo;Park, Hyoung Chul;Na, Sun Joo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Brake squeal noise has been a challenging problems for a long time. It is very annoying to passengers and residents near tracks. Two methods have been applied to reduce or eliminate brake squeal noise. One is to improve frictional materials; the other is to optimize the topology and structures of brake pads. In this study, we developed two kinds of brake pads; one is a pad whose frictional material is different from the KTX brake pad friction material; the other is a flexible pad that has the same frictional material as that of the KTX brake pad, but a different structure. Squeal noise and friction coefficients were measured and analyzed using a full-scale brake dynamometer. It was found that the dynamometer test can simulate the squeal noise of KTX trains at stations. The squeal frequency of the KTX at 4500Hz was exactly reproduced; this value of 4500Hz was one of the natural frequencies of the KTX brake disc. It was also found that the squeal noise depended on the caliper pressure, initial disc temperature and braking speed. The average friction coefficient was 0.35~0.45. The new pad lowered the squeal noise by 17.3~21.6dB(A).

Synthesis of ${\alpha}$-Alumina Nanoparticles Through Partial Hydrolysis of Aluminum Chloride Vapor (염화알미늄 증기의 부분가수분해를 통한 알파 알루미나 나노입자 제조)

  • Park, Hoey Kyung;Yoo, Youn Sug;Park, Kyun Young;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.664-668
    • /
    • 2011
  • Spherical alumina precursors represented by $AlO_xCl_y(OH)_z$, 30~200 nm in particle diameter, were prepared by partial hydrolysis of $AlCl_3$ vapor in a 500 ml reactor. Investigated on the particle morphology and size were the effects of the reaction time, the stirring speed and the reaction temperature. The particle morphology and size was insensitive to the reaction time in the range 20 to 300 s. The variation of the stirring speed from 0 to 300 and 800 rpm showed that the particle size was the largest at 0 rpm. As the temperature was varied from 180 to 190, 200, $140^{\circ}C$, the particle size showed a maximum at $190^{\circ}C$. By calcination of the as-produced particles at $1,200^{\circ}C$ for 6h with a heating rate of $10^{\circ}C$/min, ${\alpha}$-alumina particles 45 nm in surface area equivalent diameter were obtained. The particle shape after calcination turned wormlike due to sintering between neighboring particles. A rapid calcination at $1400^{\circ}C$ for 0.5 h with a higher heating rate of $50^{\circ}C$/min reduced the sintering considerably. An addition of $SiCl_4$ or TMCTS(2,4,6,8-tetramethylcyclosiloxane) to the $AlCl_3$ reduced the sintering effectively in the calcination step; however, peaks of ${\gamma}$ or mullite phase appeared. An addition of $AlF_3$ to the particles obtained from the hydrolysis resulted in a hexagonal disc shaped alumina particles.