• Title/Summary/Keyword: 유압 서보 제어

Search Result 137, Processing Time 0.025 seconds

Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule (2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어)

  • Kwak D.H.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

Modeling and Motion Control for Hydraulic Cylinder-Toggle Servomechanism (유압실린더-토글 서보 메카니즘의 모델링 및 운동제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.21-26
    • /
    • 2013
  • This paper presents a robust motion tracking control of a cylinder-toggle servomechanism for injection molding machines. Virtual design model has been developed for a five-point type toggle mechanism. A sliding function is defined and combined with PID control to accommodate mismatches between the real plant and the linear model used. From tracking control simulations, it is shown that significant reduction in position tracking error is achieved with clamping force build-up through the use of proposed control scheme.

Model Reference Adaptive Control Using $\delta$-Operator of Hydraulic Servosystem (유압 서보계의 $\delta$연산자를 이용한 모델기준형적응제어)

  • Kim, Ki-Hong;Yoon, Il-Ro;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.151-157
    • /
    • 2000
  • The MRAC theory has proved to be one of the most popular algorithms in the field of adaptive control, particularly for practical application to devices such as an hydraulic servosystem of which parameters are unknown or varying during operation. For small sampling period, the discrete time system becomes a nonminimal phase system. The $\delta$-MRAC was introduced to obtain the control performance of nonminimal phase system, because the z-MRAC can not control the plant for small sampling period. In this paper, $\delta$-MRAC is applied to the control of an hydraulic servosystem which is composed of servovalve, hydraulic cylinder and inertia load.

  • PDF

Position Control of an Electro-hydraulic Servo System with Sliding Mode (전기유압 서보시스템의 슬라이딩 모드 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.16-22
    • /
    • 2021
  • The variable structure controller has the characteristic that while in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, so it is robust to the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or exposed to disturbances. To solve this problem, a sliding mode controller based on the IVSC approach excluding an integrator is proposed in this study. The proposed sliding mode control was applied to the position control of a hydraulic cylinder piston. The sliding plane was determined by the pole placement and the control input was designed to ensure the existence of the sliding mode. The feasibility of the modeling and controller was reviewed by comparing it with a conventional proportional control through computer simulation using MATLAB software and experiment in the presence of significant plant parameter fluctuations and disturbances.

Actuator design and experimental verification on a high speed underwater vehicle (고속 수중운동체의 구동장치 설계 및 실험적 검증)

  • 곽동훈;양승윤;이동권;김창걸;서진희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.510-515
    • /
    • 1993
  • 본 연구에서는 저속에서도 시스템의 자세 제어가 용이하게 하기 위하여 추진기 뒤에 제어판이 위치하도록 설계하였으며, 일반 서보 시스템과는 달리 무게와 공간 제약이 크고, 제어판 운동에 따른 외란 등록성의 변화가 심하므로 push-pull 형태의 소형, 고출력 편로드 복동 복수 실린더의 작동기를 설계하였다. 또한 일반적으로 서보밸브와 작동기는 일체형으로 설계되나 본 시스템의 공간상 심한 제약으로 인하여 서보밸브와 작동기를 분리하는 방법으로 구조설계를 하고 그 사이 유로는 매니폴드식으로 하여 동력전달을 하였다. 설계된 구동장치를 실제 정밀제작하여 실험을 수행하였으며, 시뮬레이션 결과와 실험에 의하여 얻어진 결과를 비교 분석하여 설계의 타당성 및 시스템의 성능을 검증하였다. 고속 수중운동체에 대하여 저속에서 자세제어를 용이하게 하고, 제한된 좁은 설치공간의 문제점을 해결하기 위하여 1) 추진기 후미에 독립된 4개의 상, 하, 좌, 우 제어판 설치 2) 서보밸브는 몸체에, 작동기는 Tail Tube에 분리 작동 설계 3) 소형의 편로드 복동 복수 실린더로 설계 구성된 유압식 구동장치는 시뮬레이션과 실험 결과를 통하여 시스템의 타당성을 입증하였다. 그러므로, 개발한 구동장치는 저속에서도 큰 제어력으로 자세 제어가 용이하기 때문에 얕은 수심에서 발사시 예상되는 위험 요소를 상다ㅇ 개선 시키므로써 운용범위의 다양화를 가져 올것으로 기대된다.

  • PDF

A Study on Design and Control of Electro-Hydraulic Pump System (전기.유압펌프 시스템의 설계 및 제어에 관한 연구)

  • 박성환;하석홍;이진걸
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1062-1070
    • /
    • 1995
  • The study deals with controlling the velocity of hydraulic motor with PI controller through the control of displacement pump which has higher efficiency than valve-controlled system. This was done as follows. First, we modified original displacement pump and designed this electrohydraulic puma system. Second, after experimenting static and dynamic characteristics, we identified system parameter of approximated model. Lastly, to control the velocity of hydraulic motor we controlled the angle of the swash plate of displacement pump. Test carried out in the laboratory shows that transient and steady state response could be improved by PI controller reducing power loss.

Analysis on the Dynamic Characteristics of a DDV Actuation System of a FBW Aircraft (FBW 항공기의 DDV 구동장치에 대한 운동특성 해석)

  • Nam, Yun-Su;Park, Hae-Gyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.74-80
    • /
    • 2006
  • This paper deals with the control and fault monitoring of a DDV hydraulic actuation system. A hydraulic servo system has a nonlinear dynamics of an orifice flow through a valve spool. A full nonlinear model for a DDV actuation system is driven, and linearized to a simple model which is convenient for a control loop and fault monitor design. A top level requirement on the performance and safety for the actuation system is introduced. A control system and fault monitoring structure which can meet these requirements are discussed. A simulation package for a DDV actuation system which has a triplex redundant structure is developed.