• Title/Summary/Keyword: 유압기구

Search Result 58, Processing Time 0.029 seconds

Development of Sensorless Hydraulic Servo System for Underwater Harbor Construction (수중항만공사용 로봇의 센서리스 유압 서보 시스템 개발)

  • Kim, T.S.;Kim, C.H.;Park, K.W.;Lee, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.708-713
    • /
    • 2004
  • This research develops a sensorless hydraulic servo system of Parallel-Typed robot for harbour construction. Purpose of the robot is to mechanize the construction, which is accomplished through a joystick's operating by a stoneworker (or diver). The robot is attached on the end of an excavator as its attachment or transported by a crane to reach the desired place. The embedded compact controller is installed on the robot body and controlled by wireless telecommunication. For underwater work, it is necessary to waterproof the robot and its sensors. Especially, a sensor waterproof is a main drawback for the underwater robot. This leads us to develop a hydraulic robot position controller using an observer which gives the position information without any position sensor. We design a neural network to identify the displacement change according to the command voltage to servo valve. To verify the sensorless controller, this paper presents the performance of the sensorless control for which the position is given by the observer comparing with that of the sensor control for which the position is measured by LVDT sensors.

  • PDF

A Study on the Analysis and Development of Proportional Pressure Control Valve for Vehicle Active Suspension System via Hydraulics Actuator (유압 액추에이터를 고려한 능동 현가장치용 비례압력제어밸브의 해석과 개발)

  • 윤영환;장주섭;최명진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.111-121
    • /
    • 2000
  • Generally, the hydraulic pressures are used for transmitting the force. Therefore, a highly reliable and inexpensive control system has been required for a passenger car. The control-ability of active suspension system is strongly affected by the performance of pressure control valve in the view of dynamic response and energy consumption. In this study, we suggested main design parameters for the optimum design of proportional pressure control valve. The mathematical simulation model was derived from the quarter type model which consisted a valve and hydraulic damper for the purpose of analyzing the valve characteristics. Experiments were performed to confirm the performance of the valve and computations were carried out to ascertain the usefulness of the developed program. The results from computations fairly coincide with those from experiments. This has been achieved by developing the servomechanism valve which comprises the simple combination of a solenoid, a spool valve and a poppet valve. The results from experiments and computations show the development process of optimum proportional pressure control valve in the hydraulics system.

  • PDF

Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism (일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구)

  • Lee, Jae-Gyu;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

Cavitation Inception in Oil Hydraulic Pipeline (유압관로에서의 캐비테이션 초생)

  • Jung, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.3
    • /
    • pp.17-17
    • /
    • 1987
  • The Cavitation inception in oil hydraulic pipeline was investigated experimentally and numerically. In the experiment, negative pressures below -1 MPa (absolute pressure) were measured, associated with the transient flows in oil hydraulic pipeline. These experimental results show that the common hydraulic oil in the experimental pipeline withstands large tensions. The growth of a spherical bubble in a infinite volume of viscous compressible fluid due to a stepwise pressure drop was investigated to obtain the critical bubble radius. The calculated value of the critical bubble radius corresponding to the negative pressure measured in the experiment is so small that the premised condition about the bubble shape in the analysis is unsatisfactory. The physical significance of this calculated result implies the fact that there hardly exist free bubbles which can act as cavitation nuclei in the experimental pipeline.

Behavior of Slip Force in Continuous Flate Casting (평판 강혼 주조용 연주기의 Slip Force 거동에 대하여)

  • Si Young Kim
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.17 no.2
    • /
    • pp.85-91
    • /
    • 1981
  • An equation was derived which describes the slip force that occurs at the casting of initial state due to unequilibrium with support bar weight, liquid metal, casting velocity, thickness, control roller, hydraulic motor and etc. The slip force equations are solved on the basis of velocity, gravity and thickness in casting ingot. In this paper the auther assumed that the other mechanisms are normal. The behaviour of slip force in many characteristics is calculated as a function of velocity, gravity and thickness with variation. The conclusion with this phenomena is reached that the present theory realistically predicts the growth of slip force in a flat plate ingot continuous casting machine.

  • PDF

Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems (미션 시나리오기반 장갑형 로봇시스템 유압매니퓰레이터 설계)

  • Jeong, Dongtak;Kim, Cheol;Kim, Ju Hyun;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.51-60
    • /
    • 2017
  • In this study to develop disaster response robot in complex disaster site, we present the design of hydraulic manipulators for armored robot systems. To this end, we performed voice of customer researches with firefighters and rescue personnel. We created and analyzed the mission scenario of firefighters and rescue personnel in complex disaster situations, and derived the required functions of the robot to successfully perform missions. A heavy-duty, heat resistant, dexterous hydraulic robot manipulators is designed to realize the required functions. The designed robot has been verified through simulations and analysis in terms of the working area of the robot, actuating torques, and temperature analysis.

A Study on Manually and Continuously Variable Impact Force Control Device Development for Hydraulic Breakers (유압브레이커의 수동 무단 타격력 제어기구 개발에 대한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.46-53
    • /
    • 2020
  • In this paper, the development of a manually and continuously variable impact force control mechanism for hydraulic breakers was studied. Generally, a hydraulic breaker has one or two piston strokes. Hydraulic breakers, which have two strokes, have two valve-switching ports and make short and long piston strokes. The piston stroke valve controls the piston stroke by opening and closing a short stroke-switching port. The short piston stroke mode is used to break soft rock, concrete, or asphalt. This stroke control valve system is not popular for small hydraulic breakers mounted on 1 to 14-ton excavators. To preserve the carrier-like excavator, proper breaking force is needed, and it can be easily controlled by multiple piston stroke control valves. The easiest way to control these breakers is to use several switching ports and valves but they are not easy to install in small hydraulic breakers and are expensive. To use only one switching port and valve, a method can be used to change the open area of the switching port to delay valve switching. This method provides multiple piston strokes.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Advanced Railway Vehicle Technology using Smart Materials (지능재료를 이용한 차세대 철도차량기술)

  • 김재환;강부병;김형진;정홍채;최성규
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.712-717
    • /
    • 2003
  • 지능 재료를 이용한 디바이스는 자연계에 존재하는 생명체와 같이 내.외부 환경 변화에 대응하여 스스로 변하는 능동적 기능을 갖고 있기 때문에 시스템 성능의 극대화 및 유지비용의 최소화를 가져오게 된다. 이러한 지능재료 기술은 지난 10여년 전부터 연구되었는데 대표적인 웅용을 보면, 산업, 항공, 교통, 운송 분야의 능동 소음 및 반능동 진동제어; 복합 재료 손상위치 탐지시스템, 손상구조 건전성 평가시스템, 교량, 저장탱크, 건물, 유조선, 대형 구조물의 건전성 평가 시스템; 초정밀 직진 안내기구, 나노 스테이지, 절삭오차 보정용 엑츄에이터, 초음파 회전모터, 지능유압 서보밸브, 변형 거울 등의 모터/엑츄에이터; 자동차 엔진 성능제어, 흡배기구 압력측정, 가속도 센서, 자이로센서, 에어백 센서, 타이어 센서 등의 지능 MEMS/NEMS 센서; electronic article 정찰, 도서태그, 비접촉 항공 운송물 분류 및 보안시스템, 전자 운전자 식별시스템, 광섬유 건물 보안 시스템, 지능 신경망 형상 인식 시스템 등의 보안 시스템; 지능항공기 구조물, 인공위성안테나, 헬리콥터 회전익 등의 형상제어가 있다. 본 논문에서는 지능재료 기술을 정리하고 차세대 철도차량 기술에 지금까지 적용한 예를 소개하며 향후 적용할 수 있는 분야들을 가능성 및 실용성 면에서 소개하고자 한다.

  • PDF

The Design of Servo Control Mechanism for Swash Plate Type Axial Piston Pump (사판식 피스톤 펌프 서보제어기구 설계)

  • 노종호;함영복;윤소남;최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.741-744
    • /
    • 2002
  • The closed circuit pump is applied to control rotating speed and direction of hydraulic motor in hydrostatic transmission. To development of this pump, first of all the servo control regulator has to be designed. Mechanical-hydraulic type servo control mechanism is excellent to be compared with electronic-hydraulic type servo control valve to reliability and economy. In this paper to development positive and negative variable displacement type servo regulator, the hydro-mechanical servo control mechanism is calculated and designed with force balance of pilot piston and position feedback of servo piston.

  • PDF