• Title/Summary/Keyword: 유실

Search Result 1,117, Processing Time 0.033 seconds

항로표지 유실사고(등부표)의 효율적 대응방안

  • Lee, Dong-Yeop;Lee, Ho-Jin;Choe, Dae-Yeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.335-337
    • /
    • 2015
  • 항로표지 유실사고(등부표)가 발생 후 항로표지가 관할구역을 벗어나 타지방청 관할구역으로 표류할 경우에 대해, 실제 사례를 들어 대응 시스템의 문제점을 분석하고 효율적인 대응방안을 제시하였다.

  • PDF

스파부이의 유실방지 및 기능개선 방안

  • Yu, Jong-Seong;Gong, Hyeon-Dong;Kim, Hae-Geun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.10a
    • /
    • pp.414-416
    • /
    • 2012
  • 항로표지는 선박의 안전한 통항로 확보를 위한 필수적인 항해 보조시설이며, 세계 주요 5대 항만에 포함되는 부산항은 2006부터 입 출항 항로표의 정확한 법선 표시를 위해 스파부이(LSP-28)를 설치 운영중에 있으나 매년 선박 충돌 및 자연 유실로 2~3기의 유실사고가 발생하고 있다. 항로표지의 국제적 신뢰성 확보 및 관리 효율성을 강화하기 위하여 원인 분석과 기능 개선방안을 모색하였다.

  • PDF

Mathematical Description of Soil Loss by Runoff at Inclined Upland of Maize Cultivation (옥수수 재배 경사지 밭에서 물 유출에 따른 토양유실 예측 공식)

  • Hur, Seung-Oh;Jung, Kang-Ho;Ha, Sang-Keon;Kwak, Han-Kang;Kim, Jeong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.2
    • /
    • pp.66-71
    • /
    • 2005
  • Soil loss into stream and river by runoff shall be considered for non-point source pollution management as national land conservation. The purpose of this study was to develop the mathematical equation to predict soil loss from inclined uplands of maize cultivation due to the runoff by rainfall which mainly converges on July and August. Soil loss was concentrated on May because of low canopy over an entire field in 2002 and on June and July because of heavy rainfall in 2003. By regression analysis the relation between runoff and soil loss can be represented by a linear equation of y =1.5291x - 3.4933, where y is runoff ($Mg\;ha^{-1}$) and x is soil loss ($kg\;ha^{-1}$). The determination coefficient of this equation was 0.839 (P<0.001). Therefore, the mathematical equation derived from the practical experiment at the inclined upland can be applicable to predict soil loss accompanied by runoff due to periodic rainfall converging on short periods within a couple of months.

A Discussion on Container Loss Accidents and Responses During Ship Voyage (선박 운항 중 컨테이너 해상유실 사고 및 대응에 관한 고찰)

  • Hwang, Daejung
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.331-337
    • /
    • 2022
  • In 2021, the Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP), a U.N. advisory research institute, cited container loss as one of six sources of marine litters in shipping. The sinking of the X-P ress Pearl in May 2021 caused a catastrophic environmental pollution accident in which the loaded containers were moved to the shore, and the plastic pellets were loaded inside covered the coast of Sri Lanka. With this history, the International Maritime Organization (IMO) will discuss prevention and follow-up measures for container loss during ship voyages, as an agenda at the 8th Sub Committee on Carriage of Cargoes and Containers meeting in September 2022. To establish Korea's response direction at the IMO meeting, this study identified major causes of container loss accidents, and considered the response through analysis based on the accident investigation report and related professional data. As a result, it was found that the major cause of container loss during voyages was the enlargement of container ships, bad weather, and poor loading of containers. In particular, the need to prepare countermeasures for the deterioration of the operational safety of large container ships due to bad weather was identified. Additionally, integrated monitoring of the implementation of international conventions is required, for the safe sea transportation of container cargo. In particular, in terms of preservation of the marine environment, it is necessary to supplement the system for the recovery of lost containers. Finally, it was found that it is necessary to establish systems that can complement each other in the shipbuilding and shipping industries, in terms of shipbuilding as well as ship operation, to fundamentally prevent container loss accidents at sea. It is judged that it is difficult to resolve the various factors of container loss at sea during voyages, by responding from an individual perspective.

Efficiency of Soil Erosion to a Debris Barrier using GIS (GIS를 이용한 사방댐의 토사유실 저감효과 분석)

  • Lee, Geun-Sang;Lee, Moung-Jin;Hong, Hyun-Jung;Hwang, Eui-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.158-168
    • /
    • 2007
  • This study analyzed the reduction efficiency to a debris barrier planed with the Office of Forestry and local provinces among diverse measurements for the diminution of high-density turbid water and soil erosion of Soyang reservoir. As the analysis of soil erosion of Soyang river basin applying rainfall data (2005) and GIS database, soil erosion is estimated as 4,819,494 ton. Also, in the analysis of unit soil erosion, Chugok-, Jaun-, and Ohang stream shows high value comparing with other watersheds. Debris barrier watersheds are extracted as the center of 94 debris barrier points using GIS spatial analysis. As the analysis of soil erosion and sediment delivery ratio (SDR) of debris barrier watershed, the reduction efficiency of soil erosion of debris barrier of 2005 is analyzed as 6.8%, that is 330,203 ton. Also, the reduction efficiency of soil erosion of debris barrier of 2005 increases as 10.5%, that is 506,783 ton, when the locations of debris barrier are changed into the high soil erosion area over 5,000 ton.

  • PDF

A Study on the Estimation Method of Loss Ratio in Dredged Fills (준설매립토의 유실율 평가방법 정립에 관한 연구)

  • Kim, Seog-Yeol;Choi, Hyo-Pum;Park, Jae-Eock;Kim, Seung-Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.67-77
    • /
    • 2002
  • Volume change of the dredged soils is composed of the volume loss of soil particle flowing over an outflow weir with water and settlement due to both the self-weight consolidation in reclaimed layer and the desiccation at the surface of reclaimed layer. In order to estimate the amount of soil particles flowing over an outflow weir with water, the evaluation procedure of loss ratio of the dredged soils is proposed in the present study based on the Marsal's modified breakage theory and the results of hydrometer analyses. To verify a validity of the proposed procedure, evaluated loss ratio is compared with results from the other existing methods. The model test results and those of field test were compared and analyzed. Also, the variation of soil loss ratio was examined through the model test in the lab.

  • PDF

The Estimation of the Loss Possibility of Zeolite in Sandy Soil (사질토양(砂質土壤)에서의 Zeolite 유실(流失) 가능성(可能性)의 추정(推定))

  • Kang, Shin-Jyung;Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.311-317
    • /
    • 1986
  • This experiment was conducted to find out the minimum size of pores through that Zeolite particles moved vertically out with percolated solution in the sand column and to estimate whether they were lost through the pores in the field sandy soil. The results were as follows. 1. The amount of Zeolite loss through sand columns was increased in the order of the columns filled with $2{\sim}1>1{\sim}0.5>0.5>0.25mm$ sand particles. 2. The Zeolite particles lost through columns filled with $1{\sim}0.5$ and $0.5{\sim}0.25mm$ sand were clay fraction. 3. The pore sire that clay fraction of Zeolite mineral could migrate through was determined to be above $150{\mu}m$ and Jangchon subsoil was presumed to have possibility of Zeolite loss in consideration of its pore size distribution. 4. The suitable particle size of Zeolite for application in sandy soil was presumed to be above $2{\mu}m$.

  • PDF

The Comparative Estimation of Soil Erosion for Andong and Imha Basins using GIS Spatial Analysis (GIS 공간분석을 이용한 안동·임하호 유역의 토사유실 비교 평가)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2D
    • /
    • pp.341-347
    • /
    • 2006
  • Geographically Imha basin is adjacent to Andong basin, but the occurrence of turbid water in each reservoir by storm events shows big differences. Hence, it is very important to identify the reason for these large differences. This study compared and analyzed soil erosion using the semi-empirical soil erosion model, RUSLE for both Imha and Andong basin, especially with emphasis on high-density turbid water. The agricultural district, which is the most vulnerable to soil erosion, was intensively analyzed based on land cover map produced by Ministry of Environment. As a result, the portion of the agricultural area is 11.88% for Andong basin, while it is 14.95% for Imha basin. Also all RUSLE factors excepts practice factor turned out to be higher for Imha basin. This means that the basin characteristics such as soil texture, terrain, and land cover for Imha basin is more vulnerable to soil erosion. Estimation of soil erosion by RUSLE for Andong and Imha basin is 1,275,806 ton and 1,501,608 ton, respectively, showing higher soil erosion by 225,802 ton for Imha basin.

중력식 등표 공사에서 토목섬유의 활용

  • 장용석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.4-6
    • /
    • 2022
  • 중력식 등표는 내·외적으로 충분한 구조적 안정성을 갖도록 설계되고 있으나, 시공 시 해상공사 특성 상 불가피하게 발생하는 재료 유실은 상당한 구조적 안정성 저해 요소로 작용할 수 있다. 이에 따라, 시공 시 재료 유실을 최소화 할 수 있도록 토목섬유를 활용하는 방안을 제시하였다.

  • PDF

Estimation of Future Sediment Deposition and Sediment Distribution on Nae jang Lake (내장저수지의 장래 퇴적량 및 퇴적분포 추정)

  • Ko, Jae-Young;Park, Seung-Woo;Lee, Eun-Jung;Jang, Tae-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1541-1545
    • /
    • 2006
  • 본 연구의 목적은 내장저수지의 장래 퇴적량 및 퇴적분포를 추정하는 것으로 연구 결과는 다음과 같다. 1) 내장저수지 유역의 장래 토양유실량을 추정하기 위해 Landsat-5 TM 1984년 영상과 2001년 영상을 분석하여 토지이용변화를 알아보고, 연간 토양유실량 변화를 추정하였다. 2) 내장저수지 유역의 토양유실량을 추정하기 위하여 범용토양유실공식(USLE, Universal Soil Loss Equation)을 이용하였으며, 담수호로 유입되는 양을 추정하기 위하여 유사운송비법을 사용하였다. 담수호로 유입된 유사량 중 퇴적되는 양을 추정하기 위하여 유사량-포착효율법을 이용하였다. 3) 토양유실량의 연평균증가율을 바탕으로 장래 유입 유사량 및 퇴적량을 예측하였으며, Lara법에 의한 수위-내용적 관계 및 표고별 퇴적분포를 추정하였다.

  • PDF