• Title/Summary/Keyword: 유색광물

Search Result 33, Processing Time 0.023 seconds

Necessity of Refining Domestic Limestone (국내(國內) 석회석(石灰石)의 품위(品位) 향상(向上) 필요성(必要性))

  • Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.3-22
    • /
    • 2011
  • Until recently, domestic high grade limestone have mainly mined so high grade limestone deposits have reduced. Because of exhaustion of high grade limestone, mine of limestone have moved from ground to deep position, the grade of limestone become lower because the amount of impurities and colored mineral increased as mining position become deeper. This paper was described about grade improvement of limestone to make a high grade limestone and suitable quality of limestone products by analysis of ore genesis and characteristics, supply and demand situation, use patterns and application standards of domestic lime-stone.

Occurrence and Genesis of Amphiboles in Hornblende Gabbro in Guwoonri, Hwacheon and in Otanri, Chuncheon (화천 구운리와 춘천 오탄리 일대에 분포하는 각섬석 반려암체내에 존재하는 각섬석류의 산출양상 및 생성작용)

  • Kim, Guan-Young;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.79-91
    • /
    • 2009
  • Jurassic hornblende gabbo intrusives are distributed in Otanri, Chuncheon, and in Guwoonri, Hwacheon located in the northern part of Gyeonggi Massif. The intrusives composed mainly of amphiboles and plagioclase can be divided into two distinct rocks depending on the shape of amphiboles: (i) subspherical amphibole gabbro which has subspherical amphibole phenocryst as a major mafic phase(Sag); (ii) prismatic amphibole gabbro which has prismatic amphiboles as a principal mafic mineral(Pag). Subspherical amphiboles in Sag have higher Cr content and higher Mg($Mg+Fe^{2+}$) ratio relative to the prismatic amphiboles in Pag. This is indicative of conversion of pyroxene into amphibole with pyroxene pseudomorph. Oxygen isotopic results of plagioclase and amphibole separated from the hornblende gabbro suggest that theses minerals have experienced oxygen isotopic exchange with relatively heavy-$^{18}O$fluid for a long period, and magmatic fluid has been involved in the formation of subspherical amphiboles. Amphiboles in hornblende gabbro are composed of distinct species of pargasite, magnesiohornblende, actinolite, which formed at different stages.

Mineralogical and Geochemical Properties of Clay-silt sediments Exposed in Jangdongri, Naju, Korea (전남 나주시 장동리 지역에 노출된 적갈색 점토-실트 퇴적물의 광물 및 지화학적 특성)

  • Kwak, Tae-Hun;Jeong, Gi Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.11-19
    • /
    • 2017
  • Reddish brown clay-silt sediments covered granitoid weathering crust in the Jangdongri area, Naju, Korea. Mineralogical and geochemical properties of the ~2 m sediment section were investigated. The sediments were composed mainly of quartz (50%) and clay minerals (45%) with minor contents of K-feldspar, goethite, hematite, and gibbsite. The clay minerals were illite, illite-smectite mixed-layers, vermiculite, hydroxy-Al vermiculite, kaolinite, and halloysite. Mineral composition varied little through the section with the minor upward enrichment of plagioclase and chlorite. Abundant illitic clay minerals indicated the remote source of the sediments because clays derived by granite weathering in Korea were dominated by kaolin minerals. A comparison with the mineral composition of Asian dust (Hwangsa) suggested that plagioclase and K-feldspar disappeared by chemical weathering after deposition, resulting in the quartz and clay-rich sediments. Plagioclase and chlorite altered to kaolin and vermiculite, respectively. Goethite and hematite derived by the weathering of iron-bearing minerals stained the sediment to reddish brown color. The mineralogical and geochemical properties of the reddish brown clay-silt sediments were consistent with those of eolian deposits identified in Korea, supporting eolian origin of the Jangdongri sediments, requiring future confirmation including age dating and isotopic analysis.

Archaeometric Significant and Manufacturing Characteristics of Comb-Pattern Pottery from the Daejuk-ri Shell Midden, Seosan, Korea (서산 대죽리 패총 출토 빗살무늬토기의 제작특성과 고고과학적 의미)

  • AN Deogim;LEE Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.138-164
    • /
    • 2022
  • The Neolithic shell midden in Daejuk-ri, Seosan, is distributed on the gentle slope of a low hill close to the west coast. The bedrock of the area consists mainly of schist with various mafic minerals, but shows a partial gneiss pattern. The site consists of loamy topsoil and clay loam subsoil, and the degree of siallization is relatively low. Although the pottery excavated from the shell midden shares mostly similar features, a variety of shapes and patterns coexist. The surface colors, thickness and physical properties are slightly different. The pottery can be subdivided into three types (IA, IB and II) according to the composition of the body clay, the temper and the existence of a black core. Types IA and IB are colorless mineral pottery with a non-black or black core respectively. TypeII is colored mineral pottery with a non-black core. Type I pottery also contains non-plastic colored minerals, but type II contains a large amount of biotite, chlorite, talc, amphibole, diopside and tremolite, which include a large amount of Mg and Fe. The studied pottery contains a small amount of organic matter. Considering the grain size and relatively poor sorting and roundness of the non-plastic particles, the pottery appears to be made by adding coarse non-plastic tempers for special purposes to the untreated weathered soil around the site. The three types of pottery seem to have been incompletely fired in general. While type IB has the lowest degree of oxidation, typeII shows the highest degree of redness and oxidation. It can be interpreted that these differences depend on the firing temperature and the ratio of non-plastic particles. Through a synthesis of the minerals, geochemical data and thermal history, it can be determined that the firing temperature ranged from 600 to 700℃. The pottery types of the Daejuk-ri Shell Midden have slightly different production conditions, mineral compositions, and physical properties, but have undergone similar production processes with basically the same clay materials. The clay is almost identical to the composition of the bedrock and weathered soil distributed in the Daejuk-ri area. Currently, there is an industrial complex in the area, so it is difficult to confirm the soil and geological distribution of the site. However, it is highly probable that the area around the site was self-sufficient for the clay and tempers required for the production of the Neolithic pottery. Therefore, it can be interpreted that the group that left the shell midden in Daejuk-ri lived near the site, visited the site for the purpose of collecting and processing shellfish, and discarded the broken pottery along with shells.

Petrological Characteristics of Alkali Rhyolite in the Cheonmunbong of the Mt. Baekdu (백두산 천문봉 일대 알칼리유문암의 암석학적 특징)

  • Kim, Jungsu;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.183-200
    • /
    • 2017
  • Alkali rhyolites in the Cheonmunbong of the Mt. Baekdu stratovolcano show porphyritic texture in the glassy or aphanic groundmass. Major phenocryst is alkali-feldspar, pyroxene, and amphibole, and small amount of microphenocryst is olivine, quartz, opaque mineral (ilmenite). The content of $Fe^{2+}/(Fe^{2+}+Mg^{2+})$ and alkali elements in the mafic minerals is high. Alkali feldspar is classified as sanidine or anorthclase, olivine as fayalite, and pyroxene as ferro-hedenbergite of ferro-augite area. Amphibole belongs to alkali amphibole group, but FeO and $Fe_2O_3$ were not separated, so it is required future studies. Nb(-) anomaly suggesting that slab-derived materials might have played a primary role in the genesis of the rhyolite magma, is not observed. It is noted that they originated in the within plate environment which is not related to subduction zone of the convergent plate boundary. The Mt. Baekdu alkaline rocks are classified into the comendite series. The alkali rhyolites of the summit at Mt. Baekdu shows the disequilibrium mineral assemblages, suggesting that it evolved from thrachytic magma with experience of magma mixing as well as fractional crystallization.

Geochemical Studies of Petrogenesis of Hornblende Gabbro-Lamprophyre-Diorite Complex in Guwoonri, Hwacheon (화천 구운리 일대에 분포하는 각섬석 반려암-황반암-섬록암 복합체의 성인에 대한 지화학적 연구)

  • Kim, Guan-Young;Park, Young-Rok
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.153-169
    • /
    • 2009
  • Hornblende gabbro-lamprophyre-diorite Complex in Guwoonri, Hwacheon distributes in a zonal pattern, where the diorite distributed along the margin of the Complex encompasses the hornblende gabbro body in the central part of the Complex, and lamprophyre intruded in vein along the boundary between diorite and hornblende gabbro. The hornblende gabbro in the central part of the Complex also shows a zonal distribution pattern, where hornblende gabbro containing subspherical amphibole phenocrysts as a major mafic mineral(Sag) surrounds hornblende gabbro with prismatic amphiboles as a principal mafic mineral(Pag). The zonal distributions observed in hornblende gabbro-lamprophyre-diorite Complex in Guwoonri resulted from two different geological processes. The zonal distribution among diorite, lamprophyre, and hornblende gabbro was due to intrusions of three distinct magmas derived from different degree of partial melting of a common source rock, whereas the zonal distribution shown within the hornblende gabbro body occupying the central part of the Complex resulted from an inward fractional crystallization of a single magma. Geochemical characteristics and mineral mode of hornblende gabbro, lamprophyre, and diorite indicate that these rocks formed from hydrous mafic to intermediate magma derived from partial melting of enriched mantle, which has been caused by infiltration of volatiles including water into mantle in plate margin.

Petrology of the Cretaceous volcanic rocks in Pusan ares, Korea (부산일원에 분포하는 백악기 화산암류의 암석학적 연구(I))

  • 김진섭;윤성효
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.156-166
    • /
    • 1993
  • The volcanic stratigraphy and geochemistry of the Cretaceous volcanic rocks in the southern part of the Pusan showed that the volcanic rocks of the study area consist of alternating pyroclastic rocks and andesitic lavas, apparently constituting a thick volcanic sequence of a stratovolcano. The andesitic rocks contain augite, plagioclase, and hornblende as phenocrysts. Matrix minerals are augite, magnetite, hornblende, apatite. Mafic minerals, such as chlorite, epidote, sericite, and iron oxides occur as alteration products. Dacitic volcanic breccia and rhyolitic welded ash-flow tuff locally overlie the andesitic rocks. The rocks reported in the previous studies as andesitic breccia and andesite plot in the field of basalt, basaltic andesite, andesite, dacite and rhyolite, based on their chemical compositions. The volcanic rocks of the study area belong to the calc-alkaline series, and the andesitic rocks which are predominant in the area plot to the field of orogenic andesite.

  • PDF

Chemical Analysis of Black Crust on Stone (암석 표면의 흑화현상에 대한 화학성분적 고찰)

  • Do, Jinyoung;Riederer, J.
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2002.02a
    • /
    • pp.37-44
    • /
    • 2002
  • 암석이 화학적으로 매우 불균일하기 때문에 암석에 있어서 자연적인 풍화와 인위적인 오염에서 기인한 손상을 구별짓는다는 것은 간단하지 않다. 석재의 화학적인 풍화는 스며든 빗물이나 오염먼지 등에 의해 생성된 물질의 농도변화로 표현되어 진다. 특히 벽면 표면의 두터운 검은 외각과 얇은 검은 막은 미관상으로 뿐만 아니라 암석 자체에도 큰 손상을 끼친다. 일반적으로 이런 검은 물질들은 비 등의 수분과 직접적인 접촉이 없고, 농축된 오염물질들이 쉽게 쌓일 수 있는 곳에서 찾아볼 수 있다. 천연 암석과 마찬가지로 검게 손상된 층 또한 화학적으로 매우 복잡한 체계를 갖고 있어 그 생성 원인과 메커니즘을 규명하는 것이 어려운 일이다. 이 흑색 층은 일반적으로 공기오염물질, 유기물, 철과 망간등의 유색광물의 이동과 침착의 현상에서 생성될 수 있다. 건물들의 외벽에 사용된 여러 종류의 사암과 석회암, 인조석의 표면에는 여러 풍화 손상 형태가 나타나고 있다. 특히 표면에 있는 검은 막의 성질을 알아보기 위해 화학성분을 주성분과 미량성분으로 나누어 측정하였고, 화학적인 특징을 예측하기 위해서 분석자료를 여러 통계적인 방법으로 처리하였다.

  • PDF

Influence of elemental carbon on blackening of stone cultural properties (석조문화재의 흑화현상에 영향을 끼치는 원소탄소)

  • Do Jin-Young
    • 한국문화재보존과학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.71-74
    • /
    • 2006
  • 석조문화재 표면에는 다양한 형태의 흑색오염물질이 형성되어 있다. 흑화 현상은 일반적으로 수많은 공기오염물질과 유기물 그리고 유색광물들의 쌓임과 이동에 의해 생성될 수 있다. 흑화현상을 크게 대기오염이 심한 도시에서 나타나는 도시형과 대기오염이 적은 곳에서 발생하는 농촌형으로 나눌 수 있다. 본 연구에서는 흑색의 원인물질의 하나로 거론되고 있는 탄소물질을 열분해탄소분석기를 이용하여 분석하였다. 탄소는 유기탄소와 원소탄소로 나누어 측정되었으며, 흑색을 띄게 하는 원소탄소의 량이 도심의 흑색부위와 농촌의 흑색부위에서 차이를 보이며 검출되었다. 그러나 측정된 탄소량은 탄소 한 요소만으로 암석 표면의 흑화 현상을 설명하기에는 불충분하다. 소량이 검출되기는 했지만 두 시료에서 보여주는 탄소량의 차이는 의미가 있다. 농촌형 흑색시료에서는 도심형 시료에서 보다 유기탄소가 원소탄소보다 약간 더 검출되었다.

  • PDF

Metamorphism of Anorthositic Rocks with Respect to Amphiboles in Hadong Area (각섬석류를 활용한 하동지역 회장암체의 변성작용에 관한 연구)

  • Kwak, Ji Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.221-231
    • /
    • 2015
  • Precambrian Jirisan gneiss complex suffered retrograde metamorphism ranging from granulite facies to the amphibolite facies and/or greenschist facies. Intrusive anorthositic rocks in gneiss complex are influenced by late metamorphism. Mafic mineral in anorthositic rock composed mainly of amphiboles, which can anticipate the information about metamorphic conditions and metamorphic facies. Amphiboles from anorthositic rock show subhedral to anhedral in shape and mostly blueish green and/or green in colour in plane polarized light. Some of brownish amphiboles show zonal texture with brownish to blueish green in color from core to rim. Reaction parts in clinopyroxene which exchange with amphibole. It suggests retrograde metamorphism and/or alteration. Amphiboles composing anorthositic rocks can be classified into two types depending on the size and occurrence of amphibole. The first type is microcrystalline amphibole occurring matrix [Group I: ferrohornblende]. The second type is amphibole with 1 mm or larger in size, which is usually occurred in the boundary between opaque mineral and plagioclase [Group II: ferropargasite]. Electron microscopic analyses base on the $Al^{vi}$ composition in amphiboles suggest that the metamorphic pressure of anorthositic rock was low with 5 kbar or less. Ti compositional range in amphibole and representing hornblende+ plagioclase+garnet+biotite+chlorite mineral assemblage suggest that metamorphic facies of anorthositic rock is in amphibolite facies.