딥러닝의 등장으로 자동 음성 인식 (Automatic Speech Recognition) 기술은 인간과 컴퓨터의 상호작용을 위한 가장 중요한 요소로 자리 잡았다. 그러나 아직까지 유사 발음 오류, 띄어쓰기 오류, 기호부착 오류 등과 같이 해결해야할 난제들이 많이 존재하며 오류 유형에 대한 명확한 기준 정립이 되고 있지 않은 실정이다. 이에 본 논문은 음성 인식 시스템의 오류 유형 분류 기준을 한국어에 특화되게 설계하였으며 이를 다양한 상용화 음성 인식 시스템을 바탕으로 질적 분석 및 오류 분류를 진행하였다. 실험의 경우 도메인과 어투에 따른 분석을 각각 진행하였으며 이를 통해 각 상용화 시스템별 강건한 부분과 약점인 부분을 파악할 수 있었다.
본 연구의 목적은 중국인 한국어 초급 학습자들이 한국어를 정확하게 발음하도록 교육하는 방법을 탐구하여 제시하는 데 있다. 발음은 언어를 구사하는 데 있어 가장 기본적인 요소로, 의사소통 과정에서 학습자가 목표 언어에 대한 유창성과 정확성을 판단하는 기본 적인 요소이다. 그러나 제2외국어를 학습하는 과정에서 오류를 범하는 원인 중 하나가 모국어의 간섭으로 인한 오류 요인이 많이 작용되는 것이다. 따라서 본 연구에서는 한국어와 중국어의 음운 체계를 분류하여, 한국어와 중국어 음운 체계의 그 차이점과 유사점을 알아보고 이를 바탕으로 중국에서 태어나고 중국에서 거주하는 중국인 초급 한국어 학습자들을 위해 한국어를 정확히 발음할 수 있도록 한국어 발음 교육 방법을 모색하는 것이 본 논문의 목적이다.
오늘날 영어교육은 교과과정령에 엄연히 명시된 네 가지 기능(four skills) 즉 듣기, 말하기, 원기, 쓰기라는 정당하고도 보편 타당성 있는 명분 하에 어떻게 가르쳐 왔는가 를 반문해 보면 많은 아쉬움이 남는다. 그간 6년간의 중등과정, 심지어는 대학에서 환 두해까지 영어를 이수한 사람틀 중에는 문자를 통해서는 상당한 수준, 그것도 영어 토박이들조차 놀랄 정도의 영어를 이해하지만, 소리를 통해 들을 때는 ---말하는 것은 두말 할 것도 없고---아주 간단한 내용의 영어조차 알아듣기 힘든 경험을 한 사람이 많다는 것은 부인할 수 없는 사실이다. 그 이유는 명백하다. 즉, 문자를 대할 때는 시각적 자극의 형태가 두뇌 속에 저장된 정보---가공할 문법적 지식---와 일치하기 때문에 쉽게 이해를 할 수 있는 반면, 소리를 들을 때는 청각적 자극의 형태가 두뇌 속에 저장된 정보---극히 불완전한 발음사전, 또는 모국어의 음운체계에 의한 영어발음--- 와 차이가 있기 때문일 것이다. 그러므로 적어도 말소리를 매체로 하는 의사소통에 있어서는 영어의 본토박이 발음을 정확히, 아니면 적어도 매우 근접하게 나마 터득하여(습관화하여)두뇌에 저장하는 일이 가장 중요한 일이다. 따라서 영어교사는 모국어의 음운체계에 대한 정확하고도 상세한 지식을 토대로 하여 영어의 음운체계와 '언어학적으로 의미 있는 (linguistically significant)' 대초분석의 방법으로 발음을 지도한다면 보다 나은 학습효과를 기대할 수 있을 것이다. 일반적으로 모국어의 발음이 외국어의 발음에 간섭을 유발하는 경우는 다음과 같다. 1. 분절음체계가 서로 다를 때 2. 한 언어의 음소가 다른 언어의 이음(allophone)일 때 3. 유사한 음의 조음장소와 방법 이 다를 때 4. 분절음의 분포 또는 배열이 다를 때 5. 음운현상이 다를 때 6. 언어의 리듬이 다를 때 위의 여섯 가지 경우를 중심으로 영어와 한국어의 발음특성을 대조하여 '낯선 말투(foreign accent)' 또는 발음오류를 최소로 줄이는 것이 영어교사의 일차적인 목표이다.
영어와 한국어의 차이점 중의 하나는 한국어에서는 똑같은 자음이 앞 음절의 종성과 뒤 음절의 초성으로 나와서 겹자음이 될 수 있으나 영어에서는 이것이 불가능하다는 것이다. 그러므로 영어를 배우는 한국 학생들은 영어에서 summer와 같이 겹자음 철자를 포함하는 단어들을 발음할 때 철자의 겹자음을 모두 발음하는 오류를 흔히 보인다. 따라서 본 예비 연구에서는 한국 학생들이 영어 겹자음 철자를 어떻게 발음할 뿐 만 아니라 인지하는지 살펴보기 위해서 영어 겹자음과 단자음의 유사 최소변별쌍으로 구성된 36개의 실제어를 20명의 대학생이 듣고 발음하는 인지와 발화 실험을 실행하였다. 실험 결과 한국 학생들은 단자음 철자를 인지하거나 발화할 때는 각각 78.6%와 76.1%의 비교적 높은 정확율을 보이는 반면에 겹자음 철자을 인지하거나 발화할 때는 각각 55.3%와 61.7%의 낮은 정확율을 보임으로써, 영어 겹자음 철자를 더 길게 인지하고 또한 더 길게 발음하는 오류를 보였다. 또한 한국학생들의 발화를 스펙트로그램을 통해서 분석함으로써 영어 단자음 철자보다는 겹자음 철자에서 더 많은 발화오류를 일으키는 것도 보여주었다.
한국어에서는 모음사이에서 겹자음이 나타날 수 있으나 영어에서는 이것이 불가능하므로 영어를 배우는 한국 학생들이 $su\underline{mm}er$와 같이 겹자음 철자를 포함하는 단어들을 발음할 때 철자의 겹자음을 모두 발음하는 오류를 흔히 범한다. 따라서 본 파일럿 연구에서는 한국 학생들이 영어 겹자음 철자를 어떻게 발음하고 인지하는지 살펴보기 위해서 영어 겹자음과 단자음의 (유사) 최소변별쌍으로 구성된 36개의 실제어를 20명의 대학생이 듣고 발음하는 인지와 발화 실험을 실행하였다. 실험 결과 한국 학생들은 철자의 영향으로 영어 단자음 철자 단어를 발음할 때보다 겹자음 철자 단어를 발음할 때 이중으로 길게 발음하는 오류를 더 흔히 범해서 겹자음 철자 단어의 정확율보다 단자음의 정확율이 크게 높았으며, 인지의 경우에도 마찬가지로 단자음 철자 단어의 인지 정확율이 겹자음 철자보다 확연하게 높았다. 덧붙여, 한국 학생들의 영어 유성 파열음의 발화 오류율이 낮은 이유를 한국어 음운 체계의 전이로 설명하였다. 끝으로, 한국학생들의 발화를 스펙트로그램을 통해서 분석함으로써 영어 단자음 철자보다는 겹자음 철자에서 더 많은 발화오류를 일으키는 것도 보여주었고 또한 교육적인 함축점도 제안하였다.
본 논문은 중국인 학습자들이 많은 오류를 나타내는 한국어 /ㄹ/발음을 중심으로 중국인 학습자들의 음성 신호 파라미터들을 한국인의 것과 비교하였다. 설측음 혹은 탄설음의 변이음으로 나타나는 한국어의 /ㄹ/ 발음에 대한 중국어의 유사 발음과의 관계를 언어학적 관점에서 알아봄으로 많은 오류를 보이는 이유를 확인해 보았다. 본 논문에서는 신호의 에너지, 시간 영역에서의 파형, 주파수 성분 분석이 가능한 스펙트로그램, 자기 상관 함수를 이용해 구한 피치 (F0), 포먼트 주파수 (f1, f2, f3, 그리고 f4) 등을 사용하여서 음성학적 측면에서 비교 분석 하였다. 본 논문에서 사용한 데이터는 국어학적 분석을 통한 제시어로 구성한 것을 사용하였고 이를 시뮬레이션 하였다. 에너지와 spectrogram 분석의 결과를 보면, 중국인 학습자는 한국어 /ㄹ/ 발음에서 한국인 화자들과 많은 차이를 보인다. 이외의 다른 음성 신호 파라미터들에서도 차이가 나는 것을 알 수 있다. 본 논문이 비교한 파라미터들을 이용하여서 중국인 화자가 한국어 학습시 나타나는 오류들을 상당히 줄일 수 있을 것으로 기대할 수 있다.
음성언어처리 기술의 발전과 외국어로서의 한국어 교육에 대한 관심이 커지면서 컴퓨터를 활용한 언어교육 (CALL) 기반의 한국어 학습 시스템에 대한 연구가 활발히 진행되고 있다. 학습자의 모국어와 학습언어의 대조 분석은 양 언어의 유사점과 차이점을 찾아내어 학습자들이 무엇을 학습해야 하고, 학습자들이 보이는 오류가 어떤 것인지 판단할 수 있는 중요한 자료를 제공한다. 본 논문에서는 중국인 학습자를 위한 컴퓨터 기반 한국어 학습 시스템 개발을 위해서 선행연구의 대조분석과 실험 결과를 정리하고, 이를 토대로 중국어 학습자들이 보일 수 있는 분절음 발음 변이 양상을 예측한다.
본 논문에서는 저자원 환경의 음성인식에서 음향 모델의 성능을 높이기 위한 음향 모델 학습 방법을 제안한다. 저자원 환경이란, 음향 모델에서 100시간 미만의 학습 자료를 사용한 환경을 말한다. 저자원 환경의 음성인식에서는 음향 모델이 유사한 발음들을 잘 구분하지 못하는 문제가 발생한다. 예를 들면, 파열음 /d/와 /t/, 파열음 /g/와 /k/, 파찰음 /z/와 /ch/ 등의 발음은 저자원 환경에서 잘 구분하지 못한다. 자기 주의 메커니즘은 깊은 신경망 모델로부터 출력된 벡터에 대해 가중치를 부여하며, 이를 통해 저자원 환경에서 발생할 수 있는 유사한 발음 오류 문제를 해결한다. 음향 모델에서 좋은 성능을 보이는 Time Delay Neural Network(TDNN)과 Output gate Projected Gated Recurrent Unit(OPGRU)의 혼합 모델에 자기 주의 기반 학습 방법을 적용했을 때, 51.6 h 분량의 학습 자료를 사용한 한국어 음향 모델에 대하여 단어 오류율 기준 5.98 %의 성능을 보여 기존 기술 대비 0.74 %의 절대적 성능 개선을 보였다.
음성 대화 시스템에서는 사용자가 잘못된 슬롯명을 말하거나 음성인식 오류가 발생해 사용자의 의도에 맞지 않는 응답을 하는 경우가 있다. 이러한 문제를 해결하고자 말뭉치나 사전 데이터를 활용한 질의 교정 방법들이 제안되지만, 이는 지속적으로 사람이 개입하여 데이터를 주입해야하는 한계가 있다. 본 논문에서는 축적된 로그 데이터를 활용하여 사람의 개입 없이 음악 재생에 필요한 슬롯을 교정하는 자기 학습(Self-learning) 기반의 모델을 제안한다. 이 모델은 사용자가 특정 음악을 재생하고자 유사한 질의를 반복하는 상황을 이용하여 비지도 학습 기반으로 학습하고 음악 재생에 실패한 슬롯을 교정한다. 그리고, 학습한 모델 결과의 정확도에 대한 불확실성을 해소하기 위해 질의 슬롯 관계 유사도 모델을 이용하여 교정 결과에 대한 검증을 하고 슬롯 교정 결과에 대한 안정성을 보장한다. 모델 학습을 위한 데이터셋은 사용자가 연속으로 질의한 세션 데이터로부터 추출하며, 음악 재생 슬롯 세션 데이터와 질의 슬롯 관계 유사도 데이터를 각각 구축하여 슬롯 교정 모델과 질의 슬롯 관계 유사도 모델을 학습한다. 교정된 슬롯을 분석한 결과 발음 정보가 유사한 슬롯 뿐만 아니라 의미적인 관계가 있는 슬롯으로도 교정하여 사전 기반 방식보다 다양한 유형의 교정이 가능한 것을 보였다. 3 개월 간 수집된 로그 데이터로 학습한 음악 재생 슬롯 교정 모델은 일주일 동안 반복한 고유 질의 기준, 음악 재생 실패의 12%를 개선하는 성능을 보였다.
한국어 숫자는 모두 단음절로 이루어져 있으며, 연속적으로 발음될 때 인접 숫자들의 상호조음현상에 의해 각 숫자의 고유 발음이 변화하고, 또한 그 숫자들의 경계도 모호해지는 문제점이 있다. 이러한 문제점들과 더불어 배경잡음이나 채널에 의한 왜곡에 따른 문제점들로 인해 한국어 연결숫자의 인식 성능은 만족스럽지 못한 것이 현실이다. 본 논문에서는 연결숫자의 인식성능 향상을 위해서 한국어 숫자들의 음운변화를 고려하여 유사음소 (phonelike units: PLUs)군을 정의하고, 사용자의 여러 가지 발성형태에 따른 다양한 음운 현상의 변화를 흡수할 수 있도록 인식 시스템을 구성하는 방식을 검토하였다. 전화망 4연숫자를 이용한 화자독립 인식 실험을 수행한 결과 제안된 방법의 숫자열 인식률은 상태당 믹스쳐 (mixture) 개수가 1인 경우 83.2%로, 기준 시스템 (baseline)에 대한 오류감소률이 7.2%였고 가장 높은 성능을 나타낸 믹스쳐 개수가 11인 경우 숫자열 인식률은 91.8% 오류감소율은 4.7%였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.