• Title/Summary/Keyword: 유사 데이터

Search Result 3,367, Processing Time 0.031 seconds

Estimate method of missing data using Similarity in AMI system (AMI시스템에서 유사도를 활용한 누락데이터 보정 방법)

  • Kwon, Hyuk-Rok;Hong, Taek-Eun;Kim, Pan-Koo
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.80-84
    • /
    • 2019
  • As a result of AMI rapidly expanding and distributing its products, variety of services that utilize data on the use of electricity are increasing. In order to make these services more effective, missing metric data needs to be corrected, compensating for which Euclidean similarity is used to find customers with similar usage patterns. Throughout such a process, we propose a method for correcting missing data and provide comparison with the preceding methods.

Behavior-based Authentication Study By Measuring Cosine Similarity (코사인 유사도 측정을 통한 행위 기반 인증 연구)

  • Gil, Seon-Woong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.05a
    • /
    • pp.165-168
    • /
    • 2020
  • 사용자 행위 기반 인증 기술은 다른 인증 기술들에 비해서 인증의 인식률을 높이는데 많은 데이터의 장기간 추출이 필요하다. 본 논문은 터치 센서와 자이로스코프를 이용하여 그동안의 행위 기반 인증 연구에서 사용 되었던 행위 특정 데이터들 중에서 핵심적인 최소한의 데이터들만을 사용하였다. 측정한 데이터들의 검증에는 그간 사용자 행위 기반 인증 연구에서 이용되지 않고 문서 검색의 유사도 측정에 사용되었던 코사인 유사도를 사용하였다. 이를 통해 최소한의 특정 데이터와 기준이 되는 데이터의 코사인 유사도 비교 검증만을 통해서도 인증 범위에 적용되는 임계값을 조절하는 방식을 동해서 최초 EER 37.637%에서 최종 EER 1.897%의 높은 검증 성능을 증명하는데 성공하였다.

Image Data Classification using a Similarity Function based on Second Order Tensor (2차 텐서 기반 유사도 함수를 이용한 영상 데이터 분류)

  • Yoon, Dong-Woo;Lee, Kwan-Yong;Park, Hye-Young
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.664-672
    • /
    • 2009
  • Recently, studies on utilizing tensor expression on image data analysis and processing have been attracting much interest. The purpose of this study is to develop an efficient system for classifying image patterns by using second order tensor expression. To achieve the goal, we propose a data generation model expressed by class factors and environment factors with second order tensor representation. Based on the data generation model, we define a function for measuring similarities between two images. The similarity function is obtained by estimating the probability density of environment factors using a matrix normal distribution. Through computational experiments on a number of benchmark data sets, we confirm that we can make improvement in classification rates by using second order tensor, and that the proposed similarity function is more appropriate for image data compared to conventional similarity measures.

Practical Datasets for Similarity Measures and Their Threshold Values (유사도 측정 데이터 셋과 쓰레숄드)

  • Yang, Byoungju;Shim, Junho
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.1
    • /
    • pp.97-105
    • /
    • 2013
  • In the e-business domain where data objects are quantitatively large, measuring similarity to find the same or similar objects is important. It basically requires comparing and computing the features of objects in pairs, and therefore takes longer time as the amount of data becomes bigger. Recent studies have shown various algorithms to efficiently perform it. Most of them show their performance superiority by empirical tests over some sets of data. In this paper, we introduce those data sets, present their characteristics and the meaningful threshold values that each of data sets contain in nature. The analysis on practical data sets with respect to their threshold values may serve as a referential baseline to the future experiments of newly developed algorithms.

Similarity Pattern Analysis of Web Log Data using Multidimensional FCM (다차원 FCM을 이용한 웹 로그 데이터의 유사 패턴 분석)

  • 김미라;조동섭
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.190-192
    • /
    • 2002
  • 데이터 마이닝(Data Mining)이란 저장된 많은 양의 자료로부터 통계적 수학적 분석방법을 이용하여 다양한 가치 있는 정보를 찾아내는 일련의 과정이다. 데이터 클러스터링은 이러한 데이터 마이닝을 위한 하나의 중요한 기법이다. 본 논문에서는 Fuzzy C-Means 알고리즘을 이용하여 웹 사용자들의 행위가 기록되어 있는 웹 로그 데이터를 데이터 클러스터링 하는 방법에 관하여 연구하고자 한다. Fuzzv C-Means 클러스터링 알고리즘은 각 데이터와 각 클러스터 중심과의 거리를 고려한 유사도 측정에 기초한 목적 함수의 최적화 방식을 사용한다. 웹 로그 데이터의 여러 필드 중에서 사용자 IP, 시간, 웹 페이지 필드를 WLDF(Web Log Data for FCM)으로 가공한 후, 다차원 Fuzzy C-Means 클러스터링을 한다. 그리고 이를 이용하여 샘플 데이터와 임의의 데이터간의 유사 패턴 분석을 하고자 한다.

  • PDF

Index Structure for Efficient Similarity Search of Multi-Dimensional Data (다차원 데이터의 효과적인 유사도 검색을 위한 색인구조)

  • 복경수;허정필;유재수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.97-99
    • /
    • 2004
  • 본 논문에서는 다차원 데이터의 유사도 검색을 효과적으로 수행하기 위한 색인 구조를 제안한다. 제안하는 색인 구조는 차원의 저주 현상을 극복하기 위한 벡터 근사 기반의 색인 구조이다. 제안하는 색인 구조는 부모 노드를 기준으로 KDB-트리와 유사한 영역 분할 방식으로 분할하고 분할된 각 영역은 데이터의 분포 특성에 따라 동적 비트를 할당하여 벡터 근사화된 영역을 표현한다. 따라서, 하나의 노드 안에 않은 영역 정보를 저장하여 트리의 깊이를 줄일 수 있다. 또한 다차원의 특징 벡터 공간에 상대적인 비트를 할당하기 때문에 군집화되어 있는 데이터에 대해서 효과적이다 제안하는 색인 구조의 우수성을 보이기 위해 다양한 실험을 통하여 성능의 우수성을 입증한다.

  • PDF

Graph-based Motion Segmentation using Normalized Cuts (Normalized Cuts을 이용한 그래프 기반의 모션 분할)

  • Yun, Sung-Ju;Park, An-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.522-526
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.

  • PDF

The segmentation of Korean word for the lip-synch application (Lip-synch application을 위한 한국어 단어의 음소분할)

  • 강용성;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.509-512
    • /
    • 2001
  • 본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.

  • PDF

Similarity Calculation for Mobile Life Log Data Mining (모바일 라이프로그 데이터 마이닝을 위한 Non-Euclidean 데이터의 유사도 계산)

  • Lee, Young-Seol;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06a
    • /
    • pp.298-301
    • /
    • 2011
  • 모바일 기기에서 수집된 많은 정보들은 시맨틱한 정보들을 포함하고 있기 때문에 수치 해석에 특화된 클러스터링 등의 데이터마이닝 방법들을 적용하기가 힘들다. 따라서 상대적인 유사도를 계산하는 방법이 많이 이용되지만, 상대적인 유사도 값조차 유클리드 거리로 환산이 불가능한 특징을 가지는 경우가 많다. 본 논문에서는 비유클리드 특징을 가지는 유사도를 TFIDF 와 pseudo-Euclidean embedding을 적용하여 유클리드 공간 상의 거리값으로 변환하는 방법을 제안한다. 제안하는 방법의 가능성을 보이기 위하여 모바일 기기에서 대학생들의 생활 패턴을 반영하는 데이터를 수집하고, 수집된 데이터에 제안하는 방법을 적용한다. 그리고 적용된 결과를 대학생들의 생활 패턴과 비교하여 분석한다. 또한 장소 간의 유사도를 이용하는 애플리케이션의 프로토타입을 개발한다.

An Efficient Method for Finding Similar Regions in a 2-Dimensional Array Data (2차원 배열 데이터에서 유사 구역의 효율적인 탐색 기법)

  • Choe, YeonJeong;Lee, Ki Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.4
    • /
    • pp.185-192
    • /
    • 2017
  • In various fields of science, 2-dimensional array data is being generated actively as a result of measurements and simulations. Although various query processing techniques for array data are being studied, the problem of finding similar regions, whose sizes are not known in advance, in 2-dimensional array has not been addressed yet. Therefore, in this paper, we propose an efficient method for finding regions with similar element values, whose size is larger than a user-specified value, for a given 2-dimensional array data. The proposed method, for each pair of elements in the array, expands the corresponding two regions, whose initial size is 1, along the right and down direction in stages, keeping the shape of the two regions the same. If the difference between the elements values in the two regions becomes larger than a user-specified value, the proposed method stops the expansion. Consequently, the proposed method can find similar regions efficiently by accessing only those parts that are likely to be similar regions. Through theoretical analysis and various experiments, we show that the proposed method can find similar regions very efficiently.