본 연구는 비선형적인 시계열 자료로부터 최신 데이터와 유사한 사례를 탐색하여 미래를 예측하기 위하여 유사추론 기법을 이용한 예측 알고리즘을 제안한다. 기존의 연구들이 최신 데이터와 과거 사례와의 유사성을 비교하기 위해 유클리디언 거리 또는 평균 제곱에러 등을 이용하나, 추세의 유사성을 고려하지는 않는다. 본 연구는 사례 구간 크기, 예측 오차, 평균차이 검증, 사례간 추세의 유사성 등 다차원적 유사추론 요인을 이용한 예측방법과 그 효과를 제시한다.
본 논문에서는 퍼지라는 개념을 도입하여 기존의 전문가시스템에서 문제점으로 지적되어 온 불확실성, 모호성의 처리 기능을 부가하여 표현의 영역을 확장, 개선하여, 전문가시스템의 추론 엔진을 적용하는 근사적 유사 추론기법을 분석한다. 그리고 규칙의 조건부와 이에 대응하는 사실간의 유사도를 구하여 이들 규칙의 결론부에 반영하여 결론을 유도하는 근사적 유사 추론기법을 제안한다. 또한 이와 같은 이론적인 연구를 바탕으로 자연언어의 많은 부분을 차지하고 있는 퍼지 개념을 지원하는 당뇨병(의료)진단용 전문가시스템을 설계, 구현하여 기존의 불확실성 관리방안의 단점을 개선하고자 한다.
유비쿼터스 환경에서의 상황인식 서비스는 의료, 쇼핑, 교육, 소방, 문화 등 우리 사회 전 분야에 걸쳐 응용되고 있으며, 각 분야에 영향을 미치고 있다. 상황인식 서비스는 사용자의 상황정보를 정확하게 파악하여 신속한 서비스를 제공하는데 목적이 있다. 따라서 본 논문에서는 사용자의 상황정보를 바탕으로 보다 효율적이고 정확한 서비스를 제공하고자 지능적인 추론방법인 사례기반추론방법을 제안한다. 사례기반추론은 과거의 경험이나 상황을 사례 데이터베이스로 구축하여 어떠한 상황이나 문제가 발생하면 기존의 사례 데이터베이스에서 가장 유사한 사례들과 비교 분석하여 현재에 처한 상황과 가장 유사한 상황을 검색하여 그에 따른 사용자가 원하는 정보를 제공한다. 즉 사용자의 상황정보를 바탕으로 검색된 유사한 사례들에 대한 유사도를 측정, 구함으로써 유사도가 높은 사례일수록 현재의 상황과 가장 유사한 상황으로 인식하여 그에 따른 해결책을 제시하여 사용자로 하여금 원하는 서비스를 제공받고자한다.
모델 역추론 공격은 공격 대상 네트워크를 훈련하기 위해 사용되는 훈련 데이터셋 중 개인 데이터셋을 공개 데이터셋을 사용하여 개인 훈련 데이터셋을 복원하는 것이다. 모델 역추론 방법 중 적대적 생성 신경망을 사용하여 모델 역추론 공격을 하는 과거의 논문들은 딥러닝 모델 전체의 역추론에만 초점을 맞추기 때문에, 이를 통해 얻은 원본 이미지의 개인 데이터 정보는 제한적이다. 따라서, 본 연구는 대상 모델의 중간 출력을 사용하여 개인 데이터에 대한 더 품질 높은 정보를 얻는데 초점을 맞춘다. 본 논문에서는 적대적 생성 신경망 모델이 원본 이미지를 생성하기 위해 사용되는 계층별 역추론 공격 방법을 소개한다. MNIST 데이터셋으로 훈련된 적대적 생성 신경망 모델을 사용하여, 원본 이미지가 대상 모델의 계층을 통과하면서 얻은 중간 계층의 출력 데이터를 기반으로 원본 이미지를 재구성하고자 한다. GMI 의 공격 방식을 참고하여 공격 모델의 손실 함수를 구성한다. 손실 함수는 사전 손실 및 정체성 손실항을 포함하며, 역전파를 통해서 원본 이미지와 가장 유사하게 복원할 수 있는 표현 벡터 Z 를 찾는다. 원본 이미지와 공격 이미지 사이의 유사성을 분류 라벨의 정확도, SSIM, PSNR 값이라는 세 가지 지표를 사용하여 평가한다. 공격이 이루어지는 계층에서 복원한 이미지와 원본 이미지를 세 가지 지표를 가지고 평가한다. 실험 결과, 공격 이미지가 원본 이미지의 대상 분류 라벨을 정확하게 가지며 원본 이미지의 필체를 유사하게 복원하였음을 보여준다. 평가 지표 또한 원본 이미지와 유사하다는 것을 나타낸다.
본 논문에서는 사용자의 적합 피드백을 기반으로 적합 문서들에서 발생하는 용어들과 초기 질의어간의 발생 빈도 유사도 및 퍼지 추론을 이용하여 용어의 가중치를 산정하는 방법에 대하여 제안한다. 피드백 문서들에서 발생하는 용어들 중에서 불용어를 제외한 모든 용어들을 질의어로 확장될 수 있는 후보 용어들로 선택하고, 발생 빈도 유사성을 이용한 초기 질의어-후보 용어의 관련 정도, 용어의 IDF, DF 정보를 퍼지 추론에 적용하여 후보 용어의 초기 질의어에 대한 최종적인 관련 정도를 산정 하였으며, 피드백 문서들에서의 가중치와 관련 정도를 결합하여 후보 용어들의 가중치를 산정 하였다. 본 논문에서는 성능을 평가하기 위하여 KT-set 1.0과 KT-set 2.0을 사용하였으며, 성능의 상대적인 평가를 위하여 Dec-Hi 방법, 용어 분포 유사도를 이용한 방법, 퍼지 추론을 이용한 방법들을 정확률-재현률을 사용하여 평가하였다.
사례 기반 추론(case-based reasoning)은 과거에 유사하게 수행된 적이 있는 사레를 유추하고, 유추된 사례의 해를 이용하여 현재의 문계를 해결하는 기법으로서 규칙 기반 추론과 함께 여러 분야에 이용되고 있다. 하지만 사례기반 추론시 사레베이스로부터의 유사성에 근거한 검색을 해야 하므로 사례베이스의 크기가 증가하게 되면 검색시간이 길어지게 되거나 적절하지 못한 사레가 조회될 수 있다 특히 사레베이스 내의 모든 사례에 대하여 유사도를 계산하게 되기 때문에 수행속도가 현저히 저하되는 문제점을 지니고 있다. 본 논문에서는 규칙 및 퍼지 클러스터링에 의한 사레기반추론을 이용한 E-FFIS(Enhanced-Fire Fighting Intelligent System)를 제안한다. 제안하는 시스템은 기존의 H-FFIS(Hybrid-Fire fighting Intelligent System)와 비교해 보았을 때 수행시간을 감소시키면서 정확성을 높이게 되었다.
대다수의 사용자는 웹 검색에서 자신이 찾고자 하는 것을 표현할 때, 평균 2, 3개의 단어를 사용하고 있다. 벡터 모델이나 추론 망 모델에서 이런 질의 정보를 이용하여 좋은 결과를 얻기에는 몇 가지 어려움이 있다. 특히 추론 망 모델에서 많이 사용되는 유사도 계산식인 weighted-sum방법은 질의에 나타나는 단어의 수가 적고 많은 문서들이 이 단어들을 모두 가지고 있을 경우에 좋지 않은 검색결과를 보여주고 있다. 본 논문은 추론 망 모델에 적용되는 유사도 계산식인 weighted-sum방법을 개선하였고, 이를 기반으로 Web Trec 9의 자료를 검색하여 좋은 결과를 얻었다.
정보의 출처와 형식이 다양해지고 정보의 양 또한 많아짐에 따라 소셜 웹에서의 맞춤형 지식 생성은 더욱 어려워지고 있다. RSS(Really Simple Syndication)가 정보 수집 방법의 개선에 일조했으나, 웹에 산재된 정보를 찾아 필요한 정보들만으로 구성된 맞춤형 지식을 생성하는 것은 여전히 사용자들의 몫으로 남아 있다. 본 논문에서는 맞춤형 지식 생성의 용이성을 제고하기 위해 상황 기반 유사도를 이용한 맞춤형 지식생성 프레임워크를 제안하였다. 본 프레임워크는 기본적으로 사례 기반추론의 절차를 따르지만, 기존 사례 기반의 유사도 계산 방식이 문법적 추론에 기반했던 것과 달리, 온톨로지를 활용한 의미적 유사도를 이용한 사례 기반 추론을 활용한다. 또한 사용자 요구를 만족하는 유사사례의 보정을 위해 온톨로지를 활용한 정보 집적도 기반의 유사도 방법론을 제안하였다. 본 프레임워크에서는 첫째 비구조적인 웹 정보를 사례 형태의 구조적 정보로 변환하고, 둘째 사용자의 요구에 적합한 의미론적 유사사례를 찾은 후 셋째, 선택된 유사사례의 정보 집적도를 고려한 보정을 통해 맞춤형 지식을 생성하는 과정을 거친다. 본 논문에서는 유사도 계산에 일반적으로 활용되는 여러 방법론들과 비교를 통하여 제안한 온톨로지 기반 의미적 유사도 계산 방법론의 타당성을 입증하였다.
기존의 기호주의 적 추론 시스템은 경직성 문제로 인하여 유연성을 결여하고 있다. 이는 기호주의 적 지식표현 체계가 지식의 유연한 의미구조를 충분히 반영하고 있지 못할 뿐 아니라 추론 방법도 논리를 바탕으로 하기 때문이다. 이러한 문제를 해결하기 위하여, 우리는 최근 인공 신경 망에 기반 한 유연한 지식표현과 추론을 위한 연결주의 적 의미 망(CSN)을 제안한 바 있다. CSN은 인간의 유사성과 연관성에 기반 하여 근사 추론과 상식추론을 수행할 수 있다. 그러나 CSN 모델에서는 상위개념간의 관계를 표현하는 데 있어서 단순한 전향 신경 망을 이용함으로써 상위개념간의 일반적이고 구조화된 관계를 표현하거나 변수의 표현 및 바인딩의 어려움과 같은 문제점이 있었다. CSN모델의 이런 문제점을 해결하기 위해 본 논문에서는 상위개념간의 일반적이고 구조화된 지식표현을 가능하게 하고 추론이 용이한 기호주의 표현 체계와 이 표현 체계 안에서 의미구조를 표현하고 학습할 수 있는 연결주의 학습 모델인 CSN을 결합한 기호-연결주의 통합 시스템 SymCSN(Symbolic CSN)을 제안하고, 실험을 통하여 제안한 시스템이 인간과 유사한 유연한 지식표현과 추론을 위한 모델임을 보인다.
사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다. 이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.