• Title/Summary/Keyword: 유사어절 비교

Search Result 14, Processing Time 0.026 seconds

Empirical Research on Segmentation Method for Korean Dependency Parsing (한국어 의존 구문 분석의 분석 단위에 관한 실험적 연구)

  • Lee, Jinu;Jo, Hye Mi;Bock, Suyeon;Shin, Hyopil
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.427-432
    • /
    • 2021
  • 현재 한국어 의존 구문 분석의 표준은 어절 단위로 구문 분석을 수행하는 것이다. 그러나 의존 구문 분석의 분석 단위(어절, 형태소)에 대해서는 현재까지 심도 있는 비교 연구가 진행된 바 없다. 본 연구에서는 의존 구문 분석의 분석 단위가 자연어 처리 분야의 성능에 유의미한 영향을 끼침을 실험적으로 규명한다. STEP 2000과 모두의 말뭉치를 기반으로 구축한 형태소 단위 의존 구문 분석 말뭉치를 사용하여, 의존 구문 분석기 모델 및 의존 트리를 입력으로 활용하는 문장 의미 유사도 분석(STS) 및 관계 추출(RE) 모델을 학습하였다. 그 결과, KMDP가 기존 어절 단위 구문 분석과 비교하여 의존 구문 분석기의 성능과 응용 분야(STS, RE)의 성능이 모두 유의미하게 향상됨을 확인하였다. 이로써 형태소 단위 의존 구문 분석이 한국어 문법을 표현하는 능력이 우수하며, 문법과 의미를 연결하는 인터페이스로써 높은 활용 가치가 있음을 입증한다.

  • PDF

Measuring Similarity of Korean Sentences based on BERT (BERT 기반 한국어 문장의 유사도 측정 방법)

  • Hyeon, Jonghwan;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

Korean Unknown-noun Recognition using Strings Following Nouns in Words (명사후문자열을 이용한 미등록어 인식)

  • Park, Ki-Tak;Seo, Young-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.576-584
    • /
    • 2017
  • Unknown nouns which are not in a dictionary make problems not only morphological analysis but also almost all natural language processing area. This paper describes a recognition method for Korean unknown nouns using strings following nouns such as postposition, suffix and postposition, suffix and eomi, etc. We collect and sort words including nouns from documents and divide a word including unknown noun into two parts, candidate noun and string following the noun, by finding same prefix morphemes from more than two unknown words. We use information of strings following nouns extracted from Sejong corpus and decide unknown noun finally. We obtain 99.64% precision and 99.46% recall for unknown nouns occurred more than two forms in news of two portal sites.

Comparison between Markov Model and Hidden Markov Model for Korean Part-of-Speech and Homograph Tagging (한국어 품사 및 동형이의어 태깅을 위한 마르코프 모델과 은닉 마르코프 모델의 비교)

  • Shin, Joon-Choul;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2013.10a
    • /
    • pp.152-155
    • /
    • 2013
  • 한국어 어절은 많은 동형이의어를 가지고 있기 때문에 주변 어절(또는 문맥)을 보지 않으면 중의성을 해결하기 어렵다. 이런 중의성을 해결하기 위해서 주변 어절 정보를 입력받아 통계적으로 의미를 선택하는 기계학습 알고리즘들이 많이 연구되었으며, 그 중에서 특히 은닉 마르코프 모델을 활용한 연구가 높은 성과를 거두었다. 일반적으로 마르코프 모델만을 기반으로 알고리즘을 구성할 경우 은닉 마르코프 모델 보다는 단순하기 때문에 빠르게 작동하지만 정확률이 낮다. 본 논문은 마르코프 모델을 기반으로 하면서, 부분적으로 은닉 마르코프 모델을 혼합한 알고리즘을 제안한다. 실험 결과 속도는 마르코프 모델과 유사하며, 정확률은 은닉 마르코프 모델에 근접한 것으로 나타났다.

  • PDF

The segmentation of Korean word for the lip-synch application (Lip-synch application을 위한 한국어 단어의 음소분할)

  • 강용성;고한석
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.509-512
    • /
    • 2001
  • 본 논문은 한국어 음성에 대한 한국어 단어의 음소단위 분할을 목적으로 하였다. 대상 단어는 원광대학교 phonetic balanced 452단어 데이터 베이스를 사용하였고 분할 단위는 음성 전문가에 의해 구성된 44개의 음소셋을 사용하였다. 음소를 분할하기 위해 음성을 각각 프레임으로 나눈 후 각 프레임간의 스펙트럼 성분의 유사도를 측정한 후 측정한 유사도를 기준으로 음소의 분할점을 찾았다. 두 프레임 간의 유사도를 결정하기 위해 두 벡터 상호간의 유사성을 결정하는 방법중의 하나인 Lukasiewicz implication을 사용하였다. 본 실험에서는 기존의 프레임간 스펙트럼 성분의 유사도 측정을 이용한 하나의 어절의 유/무성음 분할 방법을 본 실험의 목적인 한국어 단어의 음소 분할 실험에 맞도록 수정하였다. 성능평가를 위해 음성 전문가에 의해 손으로 분할된 데이터와 본 실험을 통해 얻은 데이터와의 비교를 하여 평가를 하였다. 실험결과 전문가가 직접 손으로 분할한 데이터와 비교하여 32ms이내로 분할된 비율이 최고 84.76%를 나타내었다.

  • PDF

Recognizing Unknown Words and Correcting Spelling errors as Preprocessing for Korean Information Processing System (한국어 정보처리 시스템의 전처리를 위한 미등록어 추정 및 철자 오류의 자동 교정)

  • Park, Bong-Rae;Rim, Hae-Chang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.10
    • /
    • pp.2591-2599
    • /
    • 1998
  • In this paper, we proose a method of recognizing unknown words and correcting spelling errors(including spacing erors) to increase the performance of Korean information processing systems. Unknown words are recognized through comparative analysis of two or more morphologically similar eojeols(spacing units in Korean) including the same unknown word candidates. And spacing errors and spelling errors are corrected by using lexicatlized rules shich are automatically extracted from very large raw corpus. The extractionof the lexicalized rules is based on morphological and contextual similarities between error eojeols and their corection eojeols which are confirmed to be used in the corpus. The experimental result shows that our system can recognize unknown words in an accuracy of 98.9%, and can correct spacing errors and spelling errors in accuracies of 98.1% and 97.1%, respectively.

  • PDF

A Neurolinguistic Study of Korean Scrambling: An Event-related Potentials(EPR) based Study (한국어 어순재배치(scrambling) 문장의 신경언어학적 연구)

  • Hwang, Yu Mi;Lee, Kap-Hee;Yun, Yungdo
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.29-34
    • /
    • 2012
  • 본 연구는 한국어 어순재배치(scrambling) 문장의 이해 과정에서 발생되는 대뇌 활동을 사건관련전위(event-related Potentials; ERPs) 이용하여 살펴보기 위하여 실시되었다. 네 개의 어절로 구성된 표준 어순 문장(일년만에 마님이 영감을 만났어요.)과 어순재배치 문장(일년만에 영감을 마님이 만났어요.)을 어절별로 제시하고 첫 번째 명사구(NP1), 두 번째 명사구(NP2), 동사(Verb)의 시작점(onset)에서 측정한 뇌파를 비교하였다. 뇌파의 분석은 대뇌 영역을 중심선(midline), 중앙(medial), 편측(lateral)로 나누어 전후 분포(anterior-posterior distribution)와 정중선(midline)의 열에 의해 좌우 반구(hemisphere)로 분리하여 분석하였다. 분석 결과 중심선 영역에서 표준 어순에 비해 뒤섞기 어순에서 300-500ms 시간 창(time window)에서 큰 부적 전위(negative potential)가 관찰되었으며 이는 어순재배치로 인한 N400효과로 해석되며 P600효과는 관찰되지 않았다. 특히 첫 번째 명사구에서 문장유형(표준 어순 vs. 어순재배치)의 차이가 가장 크게 관찰되었으며 두 번째 명사구에서는 중앙에서 문장유형과 반구(좌우반구)의 상호작용이 관찰되었고, 동사에서는 문장유형과 반구, 문장유형과 전극 위치의 전후 분포와의 상호작용이 관찰되었다. 본 연구 결과에서 관찰된 N400효과는 독일어와 일본어를 대상으로 한 어순재배치 연구 결과와 유사하며 한국어 어순재배치 문장에 관한 사건관련 전위를 고찰하였다는 점에서 의의가 있다.

  • PDF

System Implement to Identify Copyright Infringement Based on the Text Reference Point (텍스트 기준점 기반의 저작권 침해 판단 시스템 구현)

  • Choi, Kyung-Ung;Park, Soon-Cheol;Yang, Seung-Won
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 2015
  • Most of the existing methods make the index key with every 6 words in every sentence in a document in order to identify copyright infringement between two documents. However, these methods has the disadvantage to take a long time to inspect the copyright infringement because of the long indexing time for the large-scale document. In this paper, we propose a method to select the longest word (called a feature bock) as an index key in the predetermined-sized window which scans a document character by character. This method can be characterized by removing duplicate blocks in the process of scanning a document, dramatically reducing the number of the index keys. The system with this method can find the copyright infringement positions of two documents very accurately and quickly since relatively small number of blocks are compared.

Named Entity Recognition for Patent Documents Based on Conditional Random Fields (조건부 랜덤 필드를 이용한 특허 문서의 개체명 인식)

  • Lee, Tae Seok;Shin, Su Mi;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.419-424
    • /
    • 2016
  • Named entity recognition is required to improve the retrieval accuracy of patent documents or similar patents in the claims and patent descriptions. In this paper, we proposed an automatic named entity recognition for patents by using a conditional random field that is one of the best methods in machine learning research. Named entity recognition system has been constructed from the training set of tagged corpus with 660,000 words and 70,000 words are used as a test set for evaluation. The experiment shows that the accuracy is 93.6% and the Kappa coefficient is 0.67 between manual tagging and automatic tagging system. This figure is better than the Kappa coefficient 0.6 for manually tagged results and it shows that automatic named entity tagging system can be used as a practical tagging for patent documents in replacement of a manual tagging.

An Effective Segmentation Scheme for Korean Sentence Classification tasks (한국어 문장 분류 태스크에서의 효과적 분절 전략)

  • Kim, Jin-Sung;Kim, Gyeong-Min;Son, Junyoung;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.173-177
    • /
    • 2021
  • 분절을 통한 양질의 입력 자질을 구성하는 것은 언어모델의 문장에 대한 이해도를 높이기 위한 필수적인 단계이다. 분절은 문장의 의미를 이해하는 데 있어 중요한 역할을 하기 때문이다. 따라서, 한국어 문장 분류 태스크를 수행함에 있어 한국어의 특징에 맞는 분절 기법을 선택하는 것은 필수적이다. 명확한 판단 기준 마련을 위해, 우리는 한국어 문장 분류 태스크에서 가장 효과적인 분절 기법이 무엇인지 감성 분석, 자연어 추론, 텍스트 간 의미적 유사성 판단 태스크를 통해 검증한다. 이 때 비교할 분절 기법의 유형 분류 기준은 언어학적 단위에 따라 어절, 형태소, 음절, 자모 네 가지로 설정하며, 분절 기법 외의 다른 실험 환경들은 동일하게 설정하여 분절 기법이 문장 분류 성능에 미치는 영향만을 측정하도록 한다. 실험 결과에 따르면 자모 단위의 분절 기법을 적용한 모델이 평균적으로 가장 높은 성능을 보여주며, 반복 실험 간 편차가 적어 일관적인 성능 결과를 기록함을 확인할 수 있다.

  • PDF