Proceedings of the Korean Society of Computer Information Conference
/
2019.01a
/
pp.429-430
/
2019
본 논문에서는 최적화 기법에 기반한 지능형 시스템의 재무응용사례를 다룬다. 본 연구에서 제안하는 모형은 대표적인 최적화 기법 중 하나인 시뮬레이티드 어니일링인데 이는 유전자 알고리듬과 유사한 최적화 성능을 가지고 있는 것으로 알려져 있으나 재무분야에서 응용된 사례가 거의 없다. 본 연구에서 제안하는 지능형 시스템은 시뮬레이티드 어니일링과 기계학습 기법을 결합한 것이다. 일반적으로 최적화와 기계학습 기법을 결합하는 방법은 특징선택(feature selection), 특징 가중치 최적화(feature weighting), 사례선택(instance selection), 모수 최적화(parameter optimization) 등의 방법이 있는데 선행연구에서 가장 많이 사용된 것은 특징선택에 두 기법을 결합하는 방식이다. 본 연구에서도 기계학습 기법을 재무 문제에 활용함에 있어서 최적의 특징선택을 위해 시뮬레이티드 어니일링을 결합하는 방식을 사용한다. 본 연구에서 제안된 기법의 유용성을 확인하기 위하여 실제 재무분야의 데이터를 활용하여 예측 정확도를 확인하였으며 그 결과를 통하여 제안하는 모형의 유용성을 확인할 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2023.05a
/
pp.689-691
/
2023
불균형 데이터의 분류의 성능을 향상시키기 위한 앙상블 구성 방법에 관하여 연구한다. 앙상블의 성능은 앙상블을 구성한 기계학습 모델 간의 상호 다양성에 큰 영향을 받는다. 기존 방법에서는 앙상블에 속할 모델 간의 상호 다양성을 높이기 위해 Feature Engineering 을 사용하여 다양한 모델을 만들어 사용하였다. 그럼에도 생성된 모델 가운데 유사한 모델들이 존재하며 이는 상호 다양성을 낮추고 앙상블 성능을 저하시키는 문제를 가지고 있다. 불균형 데이터의 경우에는 유사 모델 판별을 위한 기존 다양성 지표가 다수 클래스에 편향된 수치를 산출하기 때문에 적합하지 않다. 본 논문에서는 기존 다양성 지표를 개선하고 가지치기 방안을 결합하여 유사 모델을 판별하고 상호 다양성이 높은 후보 모델들을 앙상블에 포함시키는 방법을 제안한다. 실험 결과로써 제안한 방법으로 구성된 앙상블이 불균형이 심한 데이터의 분류 성능을 향상시킴을 확인하였다.
Vision Transformer (ViT) learns relationships between patches, but it may overlook important features such as color, texture, and boundaries, which can result in performance limitations in fields like medical imaging or facial recognition. To address this issue, this study proposes the Pairwise Attention Reinforcement (PAR) model. The PAR model takes both the training image and a reference image as input into the encoder, calculates the similarity between the two images, and matches the attention score maps of images with high similarity, reinforcing the matching areas of the training image. This process emphasizes important features between images and allows even subtle differences to be distinguished. In experiments using clock-drawing test data, the PAR model achieved a Precision of 0.9516, Recall of 0.8883, F1-Score of 0.9166, and an Accuracy of 92.93%. The proposed model showed a 12% performance improvement compared to API-Net, which uses the pairwise attention approach, and demonstrated a 2% performance improvement over the ViT model.
Journal of the Korean Institute of Intelligent Systems
/
v.11
no.4
/
pp.354-358
/
2001
This paper presents a fuzzy neural network model which solves the underutilization problem. This fuzzy neural network has both stability and flexibility because it uses the control structure similar to AHT(Adaptive Resonance Theory)-l neural network. And this fuzzy nenral network does not need to initialize weights and is less sensitive to noise than ART-l neural network is. The learning rule of this fuzzy neural network is the modified and fuzzified version of Kohonen learning rule and is based on the fuzzification of leaky competitive leaming and the fuzzification of conditional probability. The similarity measure of vigilance test, which is performed after selecting a winner among output neurons, is the relative distance. This relative distance considers Euclidean distance and the relative location between a datum and the prototypes of clusters. To compare the performance of the proposed fuzzy neural network with that of Kohonen Self-Organizing Feature Map the IRIS data and Gaussian-distributed data are used.
Conventional symbolic inference systems lack flexibility because they do not well reflect flexible semantic structure of knowledge and use symbolic logic for their basic inference mechanism. For solving this problem. we have recently proposed the 'Connectionist Semantic Network(CSN)' as a model for flexible knowledge representation and inference based on neural networks. The CSN is capable of carrying out both approximate reasoning and commonsense reasoning based on similarity and association. However. we have difficulties in representing general and structured high-level knowledge and variable binding using the connectionist framework of the CSN. In this paper. we propose a hybrid system called SymCSN(Symbolic CSN) that combines a symbolic module for representing general and structured high-level knowledge and a connectionist module for representing and learning low-level semantic structure Simulation results show that the SymCSN is a plausible model for human-like flexible knowledge representation and inference.
In this paper, in order to disambiguate Korean noun word sense, we define a local context and explain how to extract it from a raw corpus. Following the intuition that two different nouns are likely to have similar meanings if they occur in the same local context, we use, as a clue, the word that occurs in the same local context where the target noun occurs. This method increases the usability of extracted knowledge and makes it possible to disambiguate the sense of infrequent words. And we can overcome the data sparseness problem by extending the verbs in a local context. The sense of a target noun is decided by the maximum similarity to the clues learned previously. The similarity between two words is computed by their concept distance in the sense hierarchy borrowed from WordNet. By reducing the multiplicity of clues gradually in the process of computing maximum similarity, we can speed up for next time calculation. When a target noun has more than two local contexts, we assign a weight according to the type of each local context to implement the differences according to the strength of semantic restriction of local contexts. As another knowledge source, we get a co-occurrence information from dictionary definitions and example sentences about the target noun. This is used to support local contexts and helps to select the most appropriate sense of the target noun. Through experiments using the proposed method, we discovered that the applicability of local contexts is very high and the co-occurrence information can supplement the local context for the precision. In spite of the high multiplicity of the target nouns used in our experiments, we can achieve higher performance (89.8%) than the supervised methods which use a sense-tagged corpus.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.646-648
/
2004
기계학습의 군집화(clustering) 기법은 예제들 간의 유사성에 근거하여 주어진 예제들을 무리 짓는 방법이다. 준감독(semi-supervised) 군집화는 카테고리가 부여된(labeled) 소수의 예제들을 적극적으로 활용하여 군집형태가 보다 자연스럽게 형성되도록 유도하는 군집화 방법이다. 준감독 군집화 문제에서 예제에 카테고리를 부여하는 작업은 현실적으로 극히 제한적이거나 카테고리를 부여하는데 소요되는 비용이 상당하므로, 제한된 자원 내에서 군집화에 효용성이 높을 예제들을 선정하여 카테고리를 부여하는 것이 필요하다. 본 논문에서는 기존 연구에서 능동적 학습의 초기 훈련예제 선정을 위해 제안된 군집기반 훈련예제 선정 방법을 준감독 군집화에 적용하여 군집 결과의 질을 향상시키고자 한다. 군집화를 이용한 예제 선정 방법은 유사한 예제들은 동일한 카테고리에 속할 가능성이 높다는 가정하에 전체 예제를 활용하여 선정하고자 하는 예제 수만큼 군집을 생성 한 후. 각 군집의 중심점에 가장 가까운 예제들을 대표 예제로 선정하여 훈련 집합을 구성하는 방법이다 본 논문에서는 문서를 대상으로 하는 준감독 군집화 실험을 통해, 카테고리를 부여할 예제를 임의로 선정한 경우에 비해 군집화를 이용한 훈련 예제들로 준감독 군집화를 수행한 경우가 보다 좋은 군집을 형성함을 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.694-696
/
2001
인터넷의 이용이 생활화되면서 학생들의 인터넷 이용능력은 점차 향상되어가고 있으며 그 이용시간도 증가하는 추세다. 인터넷은 접근하기가 편리하고 시간적, 공간적 제약을 극복할 수 있고, 경제적 이점도 가져다주므로 인터넷의 교육적 활용에 대한 연구가 필요하다. 본 논문은 인터넷에 기반한 교육적 활용의 한 모델로서 WEB기반 학습지도.평가 시스템의 설계 및 구현에 관한 것이다. 즉 가상의 공간에서 교사와 학생이 상호 작용하면서 교수 학습할 수 있는 방법에 주목하여 교사는 WEB상에서 문제를 출제하고 학생 역시 WEB을 통해 손쉽게 문제를 풀고 결과를 확인할 수 있게 하는 것이다. 제안한 시스템의 설계를 위해 기존의 유사시스템을 비교.분석하여 필수 구성요소를 모두 포함하면서 미래의 학습평가방식에 적합한 효율적이고 유연성있는 모델을 만들었다. 설문조사를 통한 평가에서는 시스템의 학습효과성과 발전가능성이 높은 것으로 나타났다. 향후 평가를 통해 나타난 문제점을 보완하고 새로운 기능에 대한 연구가 따른다면 교사와 학생 모두에게 새로운 학습도구로서 흥미를 불러일으킬 수 있고, 학습 도구에 관한 새로운 인식전환의 기회가 될 것으로 생각된다.
Learning by examples has proven to be an efficient method in mastering various subjects including programming languages. This study hypothesizes that the number of examples and the type of examples are two significant dimensions that influence the performance of learning programming languages by examples. A set of experiments was conducted to investigate the impacts of the two dimensions in the domain of JAVA programming. The results showed that providing two examples is more effective than providing only one example even though significantly more explanations are attached to the single example. Among the 'two-example' groups, the group that was given functionally similar examples performed better than those with functionally dissimilar examples. Explanations for these results are provided in this paper based on the behavioral patterns of individual subjects in terms of time and frequency. This paper concludes with the implications of the study results for the development of effective tutoring systems for programming languages.
Kim, Eun-Hye;Lee, Song-A;Heo, Jun;Han, Kyung-Sook;Oh, Yong-Chul
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.536-539
/
2007
JSMS(Java source code Similarity Measurement System)는 자바 소스 코드의 유사도를 측정하고 이와 관련한 소스코드의 정보를 시각적으로 표시하는 시스템이다. 기존의 표절 검사 시스템은 소스코드의 구조적 특징을 반영하지 못해 유사도 결과의 신뢰성이 낮고 대부분 편리성과 가독성이 좋지 않아 사용하기 불편하였다. 본 논문에서 제안하는 JSMS는 이러한 단점을 보완하기 위해 함수 선형화를 사용하여 소스코드의 구조적 특징을 반영하였다. 또한 쉽고 간단한 조작으로 편리성을 제공하며, 관련 정보와 유사 구간을 시각적으로 표시하여 가독성을 높였다. 향후 다양한 언어 지원과 폭넓은 시각적 정보 제공을 보완하여 사용자의 학습 자료로 사용할 수 있으며, 소스코드 표절의 객관적 기준이 되는 도구로 활용 가능하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.