• Title/Summary/Keyword: 유사성 탐색

Search Result 492, Processing Time 0.024 seconds

현대시 구조의 사영탐색

  • An, Ju-Seon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.271-275
    • /
    • 2005
  • 현대시로부터 $C^d-$분할표를 생성하여 그의 구조적 특징을 사영탐색-플롯(Projection Pursuit-plot)을 이용하여 조사하는 방법을 소개하고, 여러 시집에서 자주 인용된 김소월 시와 서정주 시들에 적용하여 유사성을 비교한다.

  • PDF

A Similar Text Detection of Korean Document using Composition Alignment (성분 정렬을 이용한 한글 유사 문서 탐색 방법)

  • Park, Sun-Young;Cho, Hwan-Gue
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.228-231
    • /
    • 2011
  • 최근 표절에 대한 사회적 관심이 꾸준히 높아지고 있는 가운데, 기계적으로 유사한 문서를 탐색하는 방법에 대한 많은 연구가 이루어지고 있다. 이 중 생물정보학에서 유전자 서열을 분석하기 위해 사용되는 '지역 정렬(local alignment)' 기법은 문서 간 유사 영역을 탐색하는 데에 유용하다. 한편 한글에는 조사가 존재하는데, 이 때문에 한글 문장은 각 품사의 순서에 큰 영향을 받지 않는다. 이러한 한글의 특성을 이용해 기존 문서의 어순만 바꾼 문장을 생성할 경우, 지역 정렬을 이용한 탐색 방법으로는 이를 찾아내기 힘들다. 본 논문에서는 한글의 특성을 고려하여 어순과 관계없이 해당 영역의 유사성을 찾아내는 새로운 한글 유사 문서 탐색 방법을 제시한다. 이를 위하여, 성분 정렬(composition alignment) 기법을 적용한다. 성분 정렬 기법은 생물학에서 생물의 진화 과정이나 돌연변이 DNA 등 서열의 순서가 일부 뒤바뀌는 것을 허용하면서 유사한 시퀀스를 찾는 기법으로 기존의 방법보다 더욱 유연하고 민감한 방법이라 할 수 있다. 이를 적용하여 한글 문서를 탐색한 결과, 일반적인 문장 및 거의 동일한 문장 간의 유사도 점수는 큰 변화가 없었으나, 어순을 바꾼 문장의 경우 기존의 방법보다 평균 35.34% 가량 민감하게 탐색할 수 있었다. 추후 한글에 대한 초성 추출 및 성분 정렬 방법을 응용하여 다단계 구조의 유사 문서 탐색 방법에 대해 연구할 계획이다.

Similarity Search in Time-Series Databases Using Decomposition Method (시계열 데이터베이스에서의 분해법을 이용한 유사 검색 기법)

  • 박신유;문봉희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.110-112
    • /
    • 2000
  • 최근 몇 년간 시계열 데이터의 저장 및 분석에 대한 연구가 활발히 진행되고 있으며, 시계열 데이터베이스에서 유사패턴(similarity pattern)을 탐색하는 기법이 광범위한 응용분야에서 중요한 연구주제로 자리잡고 있다. 본 논문에서는 회귀분석방법을 바탕으로 한 분해 시계열 방법을 이용함으로써 기존의 유사성의 개념을 확장시켰다. 즉, 시계열 데이터가 가지고 있는 패턴을 여러 성분으로 분해하여 각기 다른 저장 공간에 저장하고, 이를 이용하여 유사성을 탐색할 때에도 분리된 각 성분 중 특정 변동특성이 유사한 데이터를 추가적으로 요구되는 시간없이 검색할 수 있다. 이는 전체 시계열 데이터를 이해하는데 뿐만 아니라 데이터를 예측하는 방법에도 유용하게 사용될 수 있다.

  • PDF

Counseling Case Retrieval System Using Hierarchical Clustering and Sentence Relevance Feedback (계층적 클러스터링과 문장 적합성 피드백을 이용한 상담사례 검색 시스템)

  • 김승일;곽희규;김수형
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.172-174
    • /
    • 1999
  • 본 논문에서는 카운셀링을 원하는 사용자가 카운셀러와 전자메일을 통해 상담을 원할 때 사용자의 상담 내용에 근거하여 유사한 사례를 검색해 주는 시스템을 제안한다. 제안방법은 문서의 계층적 클러스터링과 용어 적합성 피드백을 상담 사례 검색 시스템에 적용시켜, 상담사례에 나타나는 단어의 출현 빈도와 유사도를 통해 트리 구조를 형성하고, 이 트리 구조를 통한 하향 탐색을 수행한다. 하향 탐색을 하는 도중 노드의 매칭함수의 값이 서로 유사하여 노드 선택이 어려울 경우, 사용자에게 질의를 통해 용어를 제시하고, 사용자의 피드백을 통해 입력된 사연 내용의 가중치를 개선하여 내용에 가장 부합되는 문서를 탐색한다.

  • PDF

Semantic-based Keyword Search System over Relational Database (관계형 데이터베이스에서의 시맨틱 기반 키워드 탐색 시스템)

  • Yang, Younghyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.91-101
    • /
    • 2013
  • One issue with keyword search in general is its ambiguity which can ultimately impact the effectiveness of the search in terms of the quality of the search results. This ambiguity is primarily due to the ambiguity of the contextual meaning of each term in the query. In addition to the query ambiguity itself, the relationships between the keywords in the search results are crucial for the proper interpretation of the search results by the user and should be clearly presented in the search results. We address the keyword search ambiguity issue by adapting some of the existing approaches for keyword mapping from the query terms to the schema terms/instances. The approaches we have adapted for term mapping capture both the syntactic similarity between the query keywords and the schema terms as well as the semantic similarity of the two and give better mappings and ultimately 50% raised accurate results. Finally, to address the last issue of lacking clear relationships among the terms appearing in the search results, our system has leveraged semantic web technologies in order to enrich the knowledgebase and to discover the relationships between the keywords.

Trend Similarity Search In Time-Series Databases (시계열 데이터베이스에서의 트렌드 유사도 탐색)

  • 이지은;윤종필
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.337-339
    • /
    • 1999
  • 최근 시계열 데이터에서 유사한 패턴을 탐색하는 기법이 다양한 응용분야에서 중요한 연구 주제로 자리잡고 있다. 본 논문에서는 시계열의 트랜드를 정의하고 유사한 트랜드를 가지 시계열을 찾음으로써 유사성의 개념을 좀 더 확장, 발전시켰다. 즉, 시계열에서의 트렌드를 두 개의 이동 평균 선의 관계를 통해 정의함으로써 두 시계열 간의 거리만으로 유사도를 측정했던 기존 연구와는 달리 좀 더 패턴을 가진 수열들을 찾고 이것을 기존의 DFT방법을 이용하여 대용량의 시계열 데이터베이스에서 사용자가 정의한 임계치 이하로 차이가 나는 시계열에 대해 유사 시계열로서 최종적으로 검색하게 된다.

  • PDF

A Comparative Study of WWW Search Engine Performance (WWW 탐색도구의 색인 및 탐색 기능 평가에 관한 연구)

  • Chung Young-Mee;Kim Seong-Eun
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.31 no.1
    • /
    • pp.153-184
    • /
    • 1997
  • The importance of WWW search services is increasing as Internet information resources explode. An evaluation of current 9 search services was first conducted by comparing descriptively the features concerning indexing, searching, and ranking of search results. Secondly, a couple of search queries were used to evaluate search performance of those services by the measures of retrieval effectiveness. the degree of overlap in searching sites, and the degree of similarity between services. In this experiment, Alta Vista, HotBot and Open Text Index showed better results for the retrieval effectiveness. The level of similarity among the 9 search services was extremely low.

  • PDF

Improving Diversity of Keyword Search on Graph-structured Data by Controlling Similarity of Content Nodes (콘텐트 노드의 유사성 제어를 통한 그래프 구조 데이터 검색의 다양성 향상)

  • Park, Chang-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.3
    • /
    • pp.18-30
    • /
    • 2020
  • Recently, as graph-structured data is widely used in various fields such as social networks and semantic Webs, needs for an effective and efficient search on a large amount of graph data have been increasing. Previous keyword-based search methods often find results by considering only the relevance to a given query. However, they are likely to produce semantically similar results by selecting answers which have high query relevance but share the same content nodes. To improve the diversity of search results, we propose a top-k search method that finds a set of subtrees which are not only relevant but also diverse in terms of the content nodes by controlling their similarity. We define a criterion for a set of diverse answer trees and design two kinds of diversified top-k search algorithms which are based on incremental enumeration and A heuristic search, respectively. We also suggest an improvement on the A search algorithm to enhance its performance. We show by experiments using real data sets that the proposed heuristic search method can find relevant answers with diverse content nodes efficiently.

유사추론 기반 예측모형

  • Jang, Yong-Sik;Choe, Yun-Jeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.581-585
    • /
    • 2007
  • 본 연구는 비선형적인 시계열 자료로부터 최신 데이터와 유사한 사례를 탐색하여 미래를 예측하기 위하여 유사추론 기법을 이용한 예측 알고리즘을 제안한다. 기존의 연구들이 최신 데이터와 과거 사례와의 유사성을 비교하기 위해 유클리디언 거리 또는 평균 제곱에러 등을 이용하나, 추세의 유사성을 고려하지는 않는다. 본 연구는 사례 구간 크기, 예측 오차, 평균차이 검증, 사례간 추세의 유사성 등 다차원적 유사추론 요인을 이용한 예측방법과 그 효과를 제시한다.

  • PDF

Open API Similarity Searcing Method for Mashups (매쉬업을 위한 Open API 유사성 탐색 방법)

  • Lee, Yong-Ju
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.1279-1282
    • /
    • 2012
  • 매쉬업은 공개된 Open API들을 이용하여 두 가지 이상의 서로 다른 자원을 섞어서 완전히 새로운 가치의 서비스를 만드는 것이다. 그렇지만, Open API 포털 사이트들은 매쉬업에서 사용 가능한 수많은 API들을 제공하고 있는데 이들에 대한 조합 가능한 API 들을 탐색하고 발견하는 것은 매우 힘들고 많은 시간이 소비되는 작업이다. 본 논문에서는 다양한 Open API 타입들에 대한 API 유사성 탐색 방법을 지원하기 위해 계층적 결합 클러스터링 알고리즘과 계층관계 형태소 분석 기법을 제안한다. 본 논문에서 제안된 방법은 programmableWeb과 xmethods.net 사이트로부터 168개의 REST API와 50개의 SOAP API를 다운로드 받아 실험 분석을 수행하였으며 우리의 접근방법이 기존의 키워드 검색 방법과 Woogle 방법 보다 성능이 우수함을 보인다.