• 제목/요약/키워드: 유사문장 비교

검색결과 110건 처리시간 0.021초

BERT 기반 한국어 문장의 유사도 측정 방법 (Measuring Similarity of Korean Sentences based on BERT)

  • 현종환;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

어휘 유사 문장 판별을 위한 BERT모델의 학습자료 구축 (Methodology of Developing Train Set for BERT's Sentence Similarity Classification with Lexical Mismatch)

  • 정재환;김동준;이우철;이연수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.265-271
    • /
    • 2019
  • 본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.

  • PDF

재난안전 사회관심 분석을 위한 언어모델 활용 정보 네트워크 구축 (A Language Model based Knowledge Network for Analyzing Disaster Safety related Social Interest)

  • 최동진;한소희;김경준;배은솔
    • 한국재난정보학회:학술대회논문집
    • /
    • 한국재난정보학회 2022년 정기학술대회 논문집
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문은 대규모 텍스트 데이터에서 이슈를 발굴할 때 사용되는 기존의 정보 네트워크 또는 지식 그래프 구축 방법의 한계점을 지적하고, 문장 단위로 정보 네트워크를 구축하는 새로운 방법에 대해서 제안한다. 먼저 문장을 구성하는 단어와 캐릭터수의 분포를 측정하며 의성어와 같은 노이즈를 제거하기 위한 역치값을 설정하였다. 다음으로 BERT 기반 언어모델을 이용하여 모든 문장을 벡터화하고, 코사인 유사도를 이용하여 두 문장벡터에 대한 유사성을 측정하였다. 오분류된 유사도 결과를 최소화하기 위하여 명사형 단어의 의미적 연관성을 비교하는 알고리즘을 개발하였다. 제안된 유사문장 비교 알고리즘의 결과를 검토해 보면, 두 문장은 서술되는 형태가 다르지만 동일한 주제와 내용을 다루고 있는 것을 확인할 수 있었다. 본 논문에서 제안하는 방법은 단어 단위 지식 그래프 해석의 어려움을 극복할 수 있는 새로운 방법이다. 향후 이슈 및 트랜드 분석과 같은 미래연구 분야에 적용하면, 데이터 기반으로 특정 주제에 대한 사회적 관심을 수렴하고, 수요를 반영한 정책적 제언을 도출하는데 기여할 수 있을 것이다

  • PDF

이질적인 언어 자원의 순차적 매칭을 이용한 문장 유사도 계산 기반의 위키피디아 한국어-영어 병렬 문장 추출 방법 (Extracting Korean-English Parallel Sentences based on Measure of Sentences Similarity Using Sequential Matching of Heterogeneous Language Resources)

  • 천주룡;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.127-132
    • /
    • 2014
  • 본 논문은 위키피디아로부터 한국어-영어 간 병렬 문장을 추출하기 위해 이질적 언어 자원의 순차적 매칭을 적용한 유사도 계산 방법을 제안한다. 선행 연구에서는 병렬 문장 추출을 위해 언어 자원별로 유사도를 계산하여 선형 결합하였고, 토픽모델을 이용해 추정한 단어의 토픽 분포를 유사도 계산에 추가로 이용함으로써 병렬 문장 추출 성능을 향상시켰다. 하지만, 이는 언어 자원들이 독립적으로 사용되어 각 언어자원이 가지는 오류가 문장 간 유사도 계산에 반영되는 문제와 관련이 적은 단어 간의 분포가 유사도 계산에 반영되는 문제가 있다. 본 논문에서는 이질적인 언어 자원들을 이용해 순차적으로 단어를 매칭함으로써 언어 자원들의 독립적인 사용으로 각 자원의 오류가 유사도에 반영되는 문제를 해결하였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용함으로써 관련이 적은 단어의 분포가 반영되는 문제를 해결하였다. 실험을 통해, 언어 자원들을 이용해 순차적으로 매칭한 유사도 계산 방법은 선행 연구에 비해 F1-score 48.4%에서 51.3%로 향상된 성능을 보였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용한 방법은 약 10%에서 34.1%로 향상된 성능을 얻었다. 마지막으로, 제안한 유사도 방법들을 결합함으로써 선행연구의 51.6%에서 2.7%가 향상된 54.3%의 성능을 얻었다.

  • PDF

Self-Attention 기반의 문장 임베딩을 이용한 효과적인 문장 유사도 기법 기반의 FAQ 시스템 (An Effective Sentence Similarity Measure Method Based FAQ System Using Self-Attentive Sentence Embedding)

  • 김보성;김주애;이정엄;김선아;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.361-363
    • /
    • 2018
  • FAQ 시스템은 주어진 질문과 가장 유사한 질의를 찾아 이에 대한 답을 제공하는 시스템이다. 질의 간의 유사도를 측정하기 위해 문장을 벡터로 표현하며 일반적으로 TFIDF, Okapi BM25와 같은 방법으로 계산한 단어 가중치 벡터를 이용하여 문장을 표현한다. 하지만 단어 가중치 벡터는 어휘적 정보를 표현하는데 유용한 반면 단어의 의미적인(semantic) 정보는 표현하기 어렵다. 본 논문에서는 이를 보완하고자 딥러닝을 이용한 문장 임베딩을 구축하고 단어 가중치 벡터와 문장 임베딩을 조합한 문장 유사도 계산 모델을 제안한다. 또한 문장 임베딩 구현 시 self-attention 기법을 적용하여 문장 내 중요한 부분에 가중치를 주었다. 실험 결과 제안하는 유사도 계산 모델은 비교 모델에 비해 모두 높은 성능을 보였고 self-attention을 적용한 실험에서는 추가적인 성능 향상이 있었다.

  • PDF

길이 정보와 유사도 정보를 이용한 한영 문장 정렬 (Korean-English Sentence Alignment using Length and Similarity Information)

  • 홍진표;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2010년도 제22회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.130-135
    • /
    • 2010
  • 문장 정렬은 두 개의 문서 간의 대응이 되는 문장을 찾는 작업이다. 이 방법은 통계적 기계 번역의 학습 문서인 병렬 말뭉치를 자동으로 구축하는데 필수적인 방법이다. 본 연구에서는 길이 정보에 추가적으로 유사도 정보를 반영하는 한영 문장 정렬 방법을 제안한다. 먼저 한국어로 된 문서를 기계번역 시스템에 적용하여 영어 문서로 변환한다. 그리고 번역된 영어로 된 문서 결과와 영어로 된 대상 문서 간의 정렬 작업을 수행한다. 정렬 완료된 결과와 원시 문서, 대상 문서로부터 최종적인 결과를 생성해낸다. 본 논문에서는 기계 번역을 이용하는 방법과 더불어 기존의 길이 기반 문장 정렬 프로그램에 문장 유사도 정보를 추가하여 단어 정렬의 성능 향상을 꾀하였다. 그 결과 "21세기 세종기획"의 최종 배포본 내에 포함된 한영 병렬 말뭉치에 대해 한영 문장 정렬 F-1 자질의 결과가 89.39%를 보였다. 이 수치는 기존의 길이 기반의 단어 정렬의 성능 평가 결과와 비교했을 때 약 8.5% 가량 성능이 향상되었다.

  • PDF

한국어 문장 표절 유형을 고려한 유사 문장 판별 (A Detection Method of Similar Sentences Considering Plagiarism Patterns of Korean Sentence)

  • 지혜성;조준희;임희석
    • 컴퓨터교육학회논문지
    • /
    • 제13권6호
    • /
    • pp.79-89
    • /
    • 2010
  • 본 논문은 한국어 표절 검사를 위해서 표절의 유형을 분석하여, 유형별 분석 결과를 기반으로하여 유사 문장 판별 모델을 제안한다. 제안하는 방법은 한국어 문장에 대한 표절 유형 분석 결과를 토대로 LSA와 N-gram을 이용한 유사 문장 검색을 통하여 여러 유형의 표절로부터 견고한 유사 문장 판별 모델을 구현하였다. 제안한 모델의 성능 분석을 위해서 학생들이 인위적으로 작성한 표절 리포트와 표절한 첨부 문서로 실험 데이터를 구축하였다. 성능 비교를 위해서는 기존의 N-gram 모델, 벡터모델, LSA 모델이 사용되었으며, 실험 결과 제안한 모델이 정확률, 재현율, 그리고 F값 척도에서 우수한 성능을 보임을 알 수 있었다.

  • PDF

문장 정보량 기반 문서 추출 요약의 효과성 제고 (Improving the effectiveness of document extraction summary based on the amount of sentence information)

  • 김은희;임명진;신주현
    • 스마트미디어저널
    • /
    • 제11권3호
    • /
    • pp.31-38
    • /
    • 2022
  • 문서 추출 요약 연구에서는 문장 간 관계를 기반으로 중요한 문장을 선택하는 다양한 방법들이 제안되었다. 문장의 도합유사도를 이용한 한국어 문서 요약에서는 문장의 도합유사도를 문장 정보량으로 보고, 이를 기준으로 중요한 문장을 선택하여 요약문을 추출하였다. 그러나 이는 각 문장이 전체 문서에 기여하는 다양한 중요도를 고려하지 못한다는 문제가 있다. 이에 본 연구에서는 문장의 정량적 정보량과 의미적 정보량을 기반으로 중요한 문장을 선택하여 요약문을 제공하는 문서 추출 요약 방법을 제안한다. 실험 결과, 추출 문장 일치도는 58.56%, ROUGE 점수가 34로 비교 연구보다 우수한 성능을 보였으며, 딥러닝 기반 방법과 비교해 추출 방법은 가볍지만 성능은 유사하였다. 이를 통해 문장 간 의미적 유사성을 기반으로 정보를 압축해 나가는 방식이 문서 추출 요약에서 중요한 접근 방법임을 확인하였다. 또한 빠르게 추출된 요약문을 기반으로 문서 생성요약단계를 효과적으로 수행할 수 있으리라 기대한다.

주변 문장 유사도를 이용한 문서 재사용 측정 모델 (A Text Reuse Measuring Model Using Circumference Sentence Similarity)

  • 최성원;김상범;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.179-183
    • /
    • 2005
  • 기존의 문서 재사용 탐지 모델은 문서 혹은 문장 단위로 그 내부의 단어 혹은 n-gram을 비교를 통해 문장의 재사용을 판별하였다. 그렇지만 문서 단위의 재사용 검사는 다른 문서의 일부분을 재사용하는 경우에 대해서는 문서 내에 문서 재사용이 이루어지지 않은 부분에 의해서 그 재사용 측정값이 낮아지게 되어 오류가 발생할 수 있는 가능성이 높아진다. 반면에 문장 단위의 문서 재사용 검사는 비교문서 내의 문장들에 대한 비교를 수행하게 되므로, 문서의 일부분에 대해 재사용물 수행한 경우에도 그 재사용된 부분 내의 문장들에 대한 비교를 수행하는 것이므로 문서 단위의 재사용에 비해 그런 경우에 더 견고하게 작동된다. 그렇지만, 문장 단위의 비교는 문서에 비해 짧은 문장을 단위로 하기 때문에 그 신뢰도에 문제가 발생하게 된다. 본 논문에서는 이런 문장단위 비교의 단점을 보완하기 위해 문장 단위의 문서 재사용 검사를 수행 후, 문장의 주변 문장의 재사용 검사 결과를 이용하여 문장 단위 재사용 검사에서 일어나는 오류를 감소시키고자 하였다.

  • PDF

유사 적합성 피드백 기반의 문서 요약 기법을 이용한 효과적인 스니펫 생성 (An Effective Snippet Generation Method using Text Summarization Techniques based on Pseudo Relevance Feedback)

  • 안홍국;고영중;서정연
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.174-181
    • /
    • 2007
  • 정보 검색의 결과로 나타나는 요약문을 스니펫(snippet)이라 한다. 사용자는 자신이 원하는 정보를 얻기 위해 문서를 검색하는데, 이 때 스니펫은 사용자가 원하는 문서를 찾는데 중요한 역할을 한다. 본 논문에서는 정보검색 분야에서 높은 성능을 보이는 유사 적합성 피드백을 자동 문서 요약에 맞게 적용하여 높은 성능의 스니펫 생성 시스템을 구현한다. 우선, 사용자의 질의가 포함된 문장들을 일차적으로 요약 문장 후보로 추출한다. 그리고 추출된 문장 후보로부터 명사들을 질의 후보로 고려한다. 각 문장이 질의의 포함 여부에 따라 문장의 적합성을 판단하게 되고, 유사 적합성 피드백 확률 모델에 적용한 후 질의 후보들의 가중치를 추정하여 가중치 순위를 통해 확장할 질의들을 결정한다. 확장된 질의들과 기존의 질의들의 가중치를 합산하여 각 문장의 순위를 매기게 되고 가장 높은 순위의 문장들이 스니펫으로 제시된다. 논문에서 제안한 기법은 추가적인 핵심 질의들을 자동으로 확장하여 중요한 문장을 추출할 수 있다. 이 연구를 위해서 일반 상용 정보 검색 서비스에서 제공하는 스니펫을 수집하였고 이들의 정확도와 시스템의 정확도를 비교하였다. 실험 결과를 통해 살펴본 제안된 시스템의 성능은 상용 정보 검색기에서 제공되고 잇는 스니펫의 정확도 보다 우수한 성능을 보였다.

  • PDF