The Journal of Korean Institute of Information Technology
/
v.16
no.12
/
pp.109-114
/
2018
Collaborative filtering has been widely utilized in recommender systems as typical algorithm for outstanding performance. Since it depends on item rating history structurally, The more sparse rating matrix is, the lower its recommendation accuracy is, and sometimes it is totally useless. Variety of hybrid approaches have tried to combine collaborative filtering and content-based method for improving the sparsity issue in rating matrix. In this study, a new method is suggested for the same purpose, but with different perspective, it deals with no-match situation in person-person similarity evaluation. This method is called the transitive similarity model because it is based on relation graph of people, and it compares recommendation accuracy by applying to Movielens open dataset.
In this paper we present an improved method by using demographic information for overcoming the similarity miss-calculation from the sparsity problem in collaborative filtering recommendation systems. The similarity between a pair of users is only determined by the ratings given to co-rated items, so items that have not been rated by both users are ignored. To solve this problem, we add virtual neighbor's rating using demographic information of neighbors for improving prediction accuracy. It is one kind of extentions of traditional collaborative filtering methods using the peason correlation coefficient. We used the Grouplens movie rating data in experiment and we have compared the proposed method with the collaborative filtering methods by the mean absolute error and receive operating characteristic values. The results show that the proposed method is more efficient than the collaborative filtering methods using the pearson correlation coefficient about 9% in MAE and 13% in sensitivity of ROC.
The mean and Clustering are important methods of data mining, which is now widely applied to various multi-attributes problem However, feature weighting and feature selection are important in those methods bemuse features may differ in importance and such differences need to be considered in data mining with various multiful-attributes problem. In addition, in the event of arithmetic mean, which is inadequate to figure out the most fitted result for structure of evaluation with attributes that there are weighted and ranked. Moreover, it is hard to catch hold of a specific character for assume the form of user's group. In this paper. we propose a dispersion mean algorithm for evaluation of similarity measure based on the geometrical figure. In addition, it is applied to mean classified by user's group. One of the key issues to be considered in evaluation of the similarity measure is how to achieve objectiveness that it is not change over an item ranking in evaluation process.
Proceedings of the Korean Information Science Society Conference
/
2002.10d
/
pp.397-399
/
2002
가상교육이 활성화됨에 따라 많은 가상대학이 진행되고 있다. 이러한 가상대학운영에서 몇몇의 문제점이 제기되고 있는 것 중에서 학습자의 학습도를 평가하는 평가방법이 중요한 문제로 부각되고 있다. 이런 문제를 보완하고자 본 논문에서는 평가에서 나타날 수 있는 문제를 분석하고 오답 일치율, 신상정보 유사도, IP주소 유사도, 시험시간 유사도 등을 이용하여 담합 여부를 파악하고, 담합 행위를 방지하기 위하여 무작위 문항 제시에 의한 온라인 시험 방법으로 이를 개선하려는 시스템을 구현하였다. 그 결과 Threshold 간을 조절함으로 학습자의 담합 행위를 검출할 수 있었으며 무작위 문항 제시 방법에 적절한 시간 설정값을 조절함으로 기존 평가에서의 담합 행위를 80%정도 방지할 수 있었다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.276-280
/
2017
현대사회에 존재하는 다양한 시스템들이 병합될 때는 병합을 위해서 여러 가지 방법을 사용해 볼 수 있다. 이때 시스템의 성격에 따라 더 적절한 병합 방법론이 존재할 수 있지만, 어떤 방법이 해당 시스템을 통합하는데 더 적절한지를 판단하기는 쉽지 않다. 본 논문에서는 서로 다른 시스템을 통합할 때, 그 상호운용성을 평가하기 위한 수단으로 트리의 유사도를 측정하는 방안을 제시한다. 이렇게 측정된 유사도는 0이상 1이하의 값을 가지며, 정확한 수치로 제시되기 때문에 서로 다른 통합 방법론을 평가하기 위한 계량적 근거로 사용될 수 있다. 다만 트리 구조로 나타낼 수 없는 일부 시스템들에 대해서는 적용할 수 없는 한계를 가진다.
현대사회에 존재하는 다양한 시스템들이 병합될 때는 병합을 위해서 여러 가지 방법을 사용해 볼 수 있다. 이때 시스템의 성격에 따라 더 적절한 병합 방법론이 존재할 수 있지만, 어떤 방법이 해당 시스템을 통합하는데 더 적절한지를 판단하기는 쉽지 않다. 본 논문에서는 서로 다른 시스템을 통합할 때, 그 상호 운용성을 평가하기 위한 수단으로 트리의 유사도를 측정하는 방안을 제시한다. 이렇게 측정된 유사도는 0이상 1이하의 값을 가지며, 정확한 수치로 제시되기 때문에 서로 다른 통합 방법론을 평가하기 위한 계량적 근거로 사용될 수 있다. 다만 트리 구조로 나타낼 수 없는 일부 시스템들에 대해서는 적용할 수 없는 한계를 가진다.
Magazine of the Korean Society of Agricultural Engineers
/
v.44
no.2
/
pp.75-80
/
2002
The severity of drought in (the) irrigation reservoir could be evaluated by the accumulative rainfall method, soil moisture content method, storage ratio method, and water supply restricted intensity method, etc. The storage ratio method would be the most reliable one for irrigation reservoir. The pattern of drought might be forecast with the most similar pattern of accumulative rainfall and/or storage ratio out of the file of past operation history.
Journal of The Korean Association of Information Education
/
v.17
no.4
/
pp.375-382
/
2013
Collaborative filtering has been most widely used in commercial sites to recommend items based on the history of user preferences for items. The basic idea behind this method is to find similar users whose ratings for items are incorporated to make recommendations for new items. Hence, similarity calculation is most critical in recommendation performance. This paper presents a new similarity measure that takes each rating of a user relatively to his own ratings. Extensive experiments revealed that the proposed measure is more reliable than the classic measures in that it significantly decreases generation of extreme similarity values and its performance improves when consulting neighbors with high similarites only. In particular, the results show that the proposed measure is superior to the classic ones for datasets with large rating scales.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.247-247
/
2019
수력발전 사업에 있어 Desander 구조물은 주로 고산지대 수력발전댐의 Run-of-river 형식의 발전방식에서 유사로 인한 터빈의 손상을 방지하기 위한 목적으로 설치된다. Desander의 적정 규모는 터빈의 손상을 일으킬 수 있는 유사 입경에 대해 안정적으로 침전을 시킬 수 있는 폭/길이/깊이로 평가할 수 있으며 상대적으로 Desander의 규모가 크게 설계된 경우 초기 공사비 증가하고 반대로 규모가 작게 설계된 경우 터빈의 교체 주기 단축으로 인한 유지관리비가 증가된다. 현재까지 일반적인 Desander 구조물의 설계 방식은 제거 입경의 침전 속도, 유입유량 및 깊이를 변수로 사용하여 경험식(L. Sudry method, Guicciardis method 및 Rouse method)을 통해 규모를 결정해 왔다. 하지만, 3-D 전산유체해석을 통해 유속 흐름 분석으로 직 간접적 Desander 규모의 적정성을 평가할 수 있는 현 시점에서 경험식으로부터 도출된 결과의 신뢰성과 객관성을 검증할 필요가 있다고 판단된다. 본 연구에서는 노르웨이 NSTU에서 개발한 유사의 이송 및 확산해석 기능이 내장된 범용 소프트웨어인 SSIIM을 이용하였다. SSIIM(Simulation of Sediment movements In water Intakes with Multiblock)은 개수로 흐름 상태에서 유사 이동 및 하상 변동을 분석할 수 있도록 개발된 3-D 해석 프로그램이다. SSIIM은 수치해석 방법으로 유한체적법(Finite Volume Method)를 채택하였으며 Navier-Stokes equations을 통해 유체의 흐름을 해석한다. 입력 자료는 유입 유량($m^3/sec$), 유입 유사량(kg/sec), 유출부 수위 및 해당 Desander Structure grid 자료가 사용되며 해석 결과로 Desander 내 grid 별 유속, 수위, 유사 농도 변화 등을 제공한다. 본 연구에서는 SSIIM을 이용하여 제거 목표 유사 입경의 차집 효율(Trap efficiency)로 Desander의 적정 규모를 평가 할 수 있는 설계법을 제안하며 설계 단계에서 결정되는 최소 제거유사 입자와 차집 효율에 의한 Desander의 적정 규모 평가 분석을 파키스탄 A 프로젝트를 대상으로 수행하였다. 연구 성과로 (1)SSIIM을 통해 해석된 차집 효율을 기초로 Desander의 적정 규모를 계획할 경우 경험적 방식에 비해 설계의 객관성과 신뢰성을 제고할 수 있으며 (2)3-D 수치해석을 통해 grid 별 유사농도를 확인 할 수 있어 Desander 형상과 규모에 대한 평가가 가능하다.
Journal of the Korea Society of Computer and Information
/
v.15
no.1
/
pp.185-192
/
2010
This research suggests that valuate similarities by using the matches of patterns which is appeared on different two documents. Statistical ways such as fingerprint method are mainly used for evaluate similarities of existing documents. However, this method has a problem of accuracy for the high similarity which is occurred when many similar words are appeared from two irrelevant documents. These issues are caused by simple comparing of statistical parameters of two documents. But the method using patterns suggested on this research solved those problems because it judges similarity by searching same patterns. This method has a defect, however, that takes long time to search patterns, but this research introduce the algorithms complement this defect.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.