• 제목/요약/키워드: 유사도 기반 이미지 선택

Search Result 47, Processing Time 0.026 seconds

A Semantic-based Video Retrieval System using Design of Automatic Annotation Update and Categorizing (자동 주석 갱신 및 카테고라이징 기법을 이용한 의미기반 동영상 검색 시스템)

  • 김정재;이창수;이종희;전문석
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.2
    • /
    • pp.203-216
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

  • PDF

A Semantic-based Video Retrieval System Using the Automatic Indexing Agent (자동 인덱싱 에이전트를 이용한 의미기반 비디오 검색 시스템)

  • Kim Sam-Keun;Lee Jong-Hee;Yoon Sun-Hee;Lee Keun-Soo;Seo Jeong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.127-137
    • /
    • 2006
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the automatic indexing agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

  • PDF

Design of Indexing Agent for Semantic-based Video Retrieval (의미기반 비디오 검색을 위한 인덱싱 에이전트의 설계)

  • Lee, Jong-Hee;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.687-694
    • /
    • 2003
  • According to the rapid increase of multimedia data quantity recently, various means of video data search has been desired. In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency and requires many efforts of system administrator or annotator form less perfect automatic processing. In this paper, we propose semantic-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. Therefore, we design the system that can heighten retrieval efficiency of video data through semantic-based retrieval.

A Semantics-based Video Retrieval System using Annotation and Feature (주석 및 특징을 이용한 의미기반 비디오 검색 시스템)

  • 이종희
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.4
    • /
    • pp.95-102
    • /
    • 2004
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic-based retrieval method can be available for various query of users. Currently existent contents-based video retrieval systems search by single method such as annotation-based or feature-based retrieval, and show low search efficiency md requires many efforts of system administrator or annotator because of imperfect automatic processing. In this paper, we propose semantics-based video retrieval system which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted from query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method and optimized comparison area extracting that propose. Therefore, we propose the system that can heighten retrieval efficiency of video data through semantics-based retrieval.

Automatic Generation of Diverse Cartoons using User's Profiles and Cartoon Features (사용자 프로파일 및 만화 요소를 활용한 다양한 만화 자동 생성)

  • Song, In-Jee;Jung, Myung-Chul;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.5
    • /
    • pp.465-475
    • /
    • 2007
  • With the spread of Internet, web users express their daily life by articles, pictures and cartons to recollect personal memory or to share their experience. For the easier recollection and sharing process, this paper proposes diverse cartoon generation methods using the landmark lists which represent the behavior and emotional status of the user. From the priority and causality of each landmark, critical landmark is selected for composing the cartoon scenario, which is revised by story ontology. Using similarity between cartoon images and each landmark in the revised scenario, suitable cartoon cut for each landmark is composed. To make cartoon story more diverse, weather, nightscape, supporting character, exaggeration and animation effects are additionally applied. Through example scenarios and usability tests, the diversity of the generated cartoon is verified.

Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication (얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신)

  • Kim, Sang-Hoon;Seol, Tae-In;Chung, Sun-Tae;Cho, Seong-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.1
    • /
    • pp.112-120
    • /
    • 2009
  • Face membership authentication is to decide whether an incoming person is an enrolled member or not using face recognition, and basically belongs to two-class classification where support vector machine (SVM) has been successfully applied. The previous SVMs used for face membership authentication have been trained and tested using image feature vectors extracted from member face images of each class (enrolled class and unenrolled class). The SVM so trained using image feature vectors extracted from members in the training set may not achieve robust performance in the testing environments where configuration and size of each class can change dynamically due to member's joining or withdrawal as well as where testing face images have different illumination, pose, or facial expression from those in the training set. In this paper, we propose an effective class discriminating feature vector-based SVM for robust face membership authentication. The adopted features for training and testing the proposed SVM are chosen so as to reflect the capability of discriminating well between the enrolled class and the unenrolled class. Thus, the proposed SVM trained by the adopted class discriminating feature vectors is less affected by the change in membership and variations in illumination, pose, and facial expression of face images. Through experiments, it is shown that the face membership authentication method based on the proposed SVM performs better than the conventional SVM-based authentication methods and is relatively robust to the change in the enrolled class configuration.

A Retrieval System of Environment Education Contents using Method of Automatic Annotation and Histogram (자동 주석 및 히스토그램 기법을 이용한 환경 교육 컨텐츠 검색 시스템)

  • Lee, Keun-Wang;Kim, Jin-Hyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.114-121
    • /
    • 2008
  • In order to process video data effectively, it is required that the content information of video data is loaded in database and semantic- based retrieval method can be available for various query of users. In this paper, we propose semantic-based video retrieval system for Environment Education Contents which support semantic retrieval of various users by feature-based retrieval and annotation-based retrieval of massive video data. By user's fundamental query and selection of image for key frame that extracted form query, the agent gives the detail shape for annotation of extracted key frame. Also, key frame selected by user become query image and searches the most similar key frame through feature based retrieval method that propose. From experiment, the designed and implemented system showed high precision ratio in performance assessment more than 90 percents.

An Automatic Generation Method of the Initial Query Set for Image Search on the Mobile Internet (모바일 인터넷 기반 이미지 검색을 위한 초기질의 자동생성 기법)

  • Kim, Deok-Hwan;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.1
    • /
    • pp.1-14
    • /
    • 2007
  • Character images for the background screen of cell phones are one of the fast growing sectors of the mobile content market. However, character image buyers currently experience tremendous difficulties in searching for desired images due to the awkward image search process. Content-based image retrieval (CBIR) widely used for image retrieval could be a good candidate as a solution to this problem, but it needs to overcome the limitation of the mobile Internet environment where an initial query set (IQS) cannot be easily provided as in the PC-based environment. We propose a new approach, IQS-AutoGen, which automatically generates an initial query set for CBIR on the mobile Internet. The approach applies the collaborative filtering (CF), a well-known recommendation technique, to the CBIR process by using users' preference information collected during the relevance feedback process of CBIR. The results of the experiment using a PC-based prototype system show that the proposed approach successfully satisfies the initial query requirement of CBIR in the mobile Internet environment, thereby outperforming the current image search process on the mobile Internet.

  • PDF

Performance Comparisons of GAN-Based Generative Models for New Product Development (신제품 개발을 위한 GAN 기반 생성모델 성능 비교)

  • Lee, Dong-Hun;Lee, Se-Hun;Kang, Jae-Mo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.867-871
    • /
    • 2022
  • Amid the recent rapid trend change, the change in design has a great impact on the sales of fashion companies, so it is inevitable to be careful in choosing new designs. With the recent development of the artificial intelligence field, various machine learning is being used a lot in the fashion market to increase consumers' preferences. To contribute to increasing reliability in the development of new products by quantifying abstract concepts such as preferences, we generate new images that do not exist through three adversarial generative neural networks (GANs) and numerically compare abstract concepts of preferences using pre-trained convolution neural networks (CNNs). Deep convolutional generative adversarial networks (DCGAN), Progressive growing adversarial networks (PGGAN), and Dual Discriminator generative adversarial networks (DANs), which were trained to produce comparative, high-level, and high-level images. The degree of similarity measured was considered as a preference, and the experimental results showed that D2GAN showed a relatively high similarity compared to DCGAN and PGGAN.

Geometric Snapping for 3D Triangular Meshes and Its Applications (3차원 삼각형 메쉬에 대한 기하학적 스내핑과 그의 응용)

  • 유관희;하종성
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.239-246
    • /
    • 2004
  • Image snapping for an image moves the cursor location to nearby features in the image, such as edges. In this paper, we propose geometric snapping for 3D triangular meshes, which is extended from image snapping. Similar to image snapping, geometric snapping also moves the cursor location naturally to a location which represents main geometric features in the 3D triangular meshes. Movement of cursor is based on the approximate curvatures which appear geometric features on the 3D triangular meshes. The proposed geometric snapping can be applied to extract main geometric features on 3D triangular meshes. Moreover, it can be applied to extract the geometric features of a tooth which are necessary for generating the occlusal surfaces in dental prostheses.