• 제목/요약/키워드: 유사도 계산 방법

검색결과 1,270건 처리시간 0.027초

이질적인 언어 자원의 순차적 매칭을 이용한 문장 유사도 계산 기반의 위키피디아 한국어-영어 병렬 문장 추출 방법 (Extracting Korean-English Parallel Sentences based on Measure of Sentences Similarity Using Sequential Matching of Heterogeneous Language Resources)

  • 천주룡;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.127-132
    • /
    • 2014
  • 본 논문은 위키피디아로부터 한국어-영어 간 병렬 문장을 추출하기 위해 이질적 언어 자원의 순차적 매칭을 적용한 유사도 계산 방법을 제안한다. 선행 연구에서는 병렬 문장 추출을 위해 언어 자원별로 유사도를 계산하여 선형 결합하였고, 토픽모델을 이용해 추정한 단어의 토픽 분포를 유사도 계산에 추가로 이용함으로써 병렬 문장 추출 성능을 향상시켰다. 하지만, 이는 언어 자원들이 독립적으로 사용되어 각 언어자원이 가지는 오류가 문장 간 유사도 계산에 반영되는 문제와 관련이 적은 단어 간의 분포가 유사도 계산에 반영되는 문제가 있다. 본 논문에서는 이질적인 언어 자원들을 이용해 순차적으로 단어를 매칭함으로써 언어 자원들의 독립적인 사용으로 각 자원의 오류가 유사도에 반영되는 문제를 해결하였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용함으로써 관련이 적은 단어의 분포가 반영되는 문제를 해결하였다. 실험을 통해, 언어 자원들을 이용해 순차적으로 매칭한 유사도 계산 방법은 선행 연구에 비해 F1-score 48.4%에서 51.3%로 향상된 성능을 보였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용한 방법은 약 10%에서 34.1%로 향상된 성능을 얻었다. 마지막으로, 제안한 유사도 방법들을 결합함으로써 선행연구의 51.6%에서 2.7%가 향상된 54.3%의 성능을 얻었다.

  • PDF

화자식별 시스템의 계산량 감소를 위한 화자 프루닝 방법 (A Speaker Pruning Method for Reducing Calculation Costs of Speaker Identification System)

  • 김민정;오세진;정호열;정현열
    • 한국음향학회지
    • /
    • 제22권6호
    • /
    • pp.457-462
    • /
    • 2003
  • 본 논문에서는 GMM (Gaussian Mixture Model)에 기반한 문맥독립 화자식별 시스템의 식별성능 향상과 실시간 처리를 위한 계산량 감소를 위하여 화자 프루닝 (Speaker Pruning) 방법을 제안한다. 기존의 화자식별 방법인 최대유사도(Maximum Likelihood) 방법과 가중모델순위 (Weighting Model Rank) 방법, 수정된 가중모델순위 (Modified WMR) 방법 등은 입력 음성 전체와 모든 화자모델들과의 유사도를 프레임 단위로 계산하여 가장 큰 누적 유사도를 가지는 화자를 식별화자로 결정하는 방법으로써, 입력 프레임 및 등록 화자수가 늘어남에 따라 계산량 및 식별시간이 늘어나는 단점이 있었다. 이러한 단점을 해결하기 위하여, 제안방법은 입력음성 프레임의 일부분만을 이용하여 화자모델들과의 프레임 유사도를 계산한 후 계산된 유사도를 이용하여 등록화자의 상위 일부분의 화자만을 선택하고, 선택된 화자들에서만 유사도 계산을 수행함으로서 계산량 및 식별시간을 줄이는 방법이다. 또한, 화자 프루닝을 적용할 경우 화자수가 가변 되더라도 수정된 가중모델 순위방법을 적용할 수 있어 식별성능을 높일 수 있다. 식별실험결과, 제안방법을 적용한 경우 기존의 최대 유사도 방법이나 가중모델순위 방법보다 최대 65%의 계산량 및 식별시간을 감소시킬 수 있었으며, 약 2%의 향상된 식별결과를 나타내어, 본 논문에서 제안한 방법의 유효성을 확인할 수 있었다.

상이한 칼라 집합으로 구성된 영상의 정합에 관한 기초 연구 (A Basic Study on Matching Color Images with Different Color Sets)

  • 김동균;김성영;김종민;김민환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 춘계학술발표논문집(상)
    • /
    • pp.164-169
    • /
    • 2002
  • 칼라 정보를 이용하여 영상을 정합하기 위해서는 적은 수의 칼라 집합으로 영상을 표현하는 영상 양자화 과정이 필요하다. 적응적 양자화를 사용하는 경우에는 균일 양자화에 비해 높은 정합 성능을 기대할 수 있지만 상이한 칼라 집합의 생성으로 인해 영상 정합 과정이 힘들게 된다. 이에 본 논문에서는 상이한 칼라 집합을 갖는 영상을 정합할 수 있는 기초적인 연구를 수행하였다. 영상 정합을 위해 우선 STR(sort-tile-recursive) 방법[1]을 응용하여 질의 영상의 각 칼라에 대한 유사 칼라를 DB 영상으로부터 빠르게 선정할 수 있는 방법을 개발하였다. 질의 칼라와 유사 칼라간의 유사도를 정의하고 이를 기반으로 영상간의 유사도를 계산함으로써 영상 정합에 이용할 수 있도록 하였다. 칼라간의 유사도는 칼라 차이가 고려되어 정의되는데 칼라 차이는 칼라 공간에서의 칼라 거리로 계산된다. 칼라 거리를 계산하기 위해 유클리디언 거리를 이용할 경우 많은 계산량이 요구되므로 기존의 시티블록 거리나 체스보드 거리에 비해 유클리디언 거리를 좀더 유사하게 근사화하면서 빠른 계산이 가능한 거리 계산 방법을 개발하였다.

  • PDF

중복을 허용하는 계층적 클러스터링 기법에서 클러스터 간 유사도 평가 (A Novel Linkage Metric for Overlap Allowed Hierarchical Clustering)

  • 전준우;송광호;김유성
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.157-161
    • /
    • 2016
  • 본 논문에서는 클러스터 간의 중복을 허용한 계층적 클러스터링(hierarchical clustering) 기법에 적합한 클러스터 간 유사도 평가방법(linkage metric)을 제안하였다. 클러스터 간 유사도 평가방법은 계층적 클러스터링에서 클러스터를 통합하거나 분해하는데 쓰이며 사용된 방법에 따라 클러스터링의 결과가 다르게 형성된다. 기존의 클러스터 간 유사도 평가방법인 single linkage, complete linkage, average linkage 중 single linkage와 complete linkage는 클러스터 간 중복이 허용된 환경에서 정확도가 낮은 문제점이 있고, average linkage는 정확도가 두 방법에 비해 높지만 계산 시간 소요가 크다는 단점이 있다. 따라서 본 논문에서는 기존의 average linkage를 개선하여 중복된 데이터에 의한 필요 계산량을 크게 줄임으로써 시간적 성능이 우수한 클러스터 간 유사도 평가방법을 제안하였다. 또한, 제안된 방법을 기존 방법들과 비교실험하여 중복을 허용하는 계층적 클러스터링 환경에서 정확도는 비슷하거나 더 높고, average linkage에 비해 계산량이 감소됨을 확인하였다.

  • PDF

반복적 알고리즘을 이용한 온톨로지 매핑 (An iterative algorithm for Ontology mapping)

  • 안진현;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-18
    • /
    • 2009
  • 온톨로지 매핑은 서로 다른 온톨로지에 있는 클래스가 유사한 개념을 표현한 것인지 판단하는 문제이다. 클래스 유사도를 계산 하는 방법에는 클래스의 이름 어휘 유사도, 의미 유사도, 클래스 관계/속성 유사도 그리고 클래스 상하위 관계 유사도 등이 제안되었다. 본 논문에서는 이러한 클래스 유사도를 계산하기 위한 반복적 유사도 계산 알고리즘을 제안한다. 매 반복 단계마다 모든 클래스 쌍의 유사도를 전부 갱신 하는 방법과 유사도가 최대인 쌍만 선택적으로 갱신 하는 방법을 비교 실험하였다. 실험 결과 유사도가 최대인 쌍만 업데이트하는 방법의 성능이 좋았고 소요시간도 적었다.

  • PDF

구글 학술 검색 기반의 질병과 바이오마커 관계 분석 (Relation Analysis of Disease and Biomarker based on Google Scholar)

  • 오병두;김유섭
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 하며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF

구글 학술 검색 기반의 질병과 바이오마커 관계 분석 (Relation Analysis of Disease and Biomarker based on Google Scholar)

  • 오병두;김유섭
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.238-241
    • /
    • 2017
  • 본 논문에서는 구글 학술 검색 기반의 데이터를 이용하여 질병과 폐질환과 관련된 바이오마커 단어의 유사도를 계산하는 방법을 제안한다. 질병과 바이오마커의 유사도를 계산할 때, 각 단어의 구글 학술 검색의 검색 결과를 이용하였다. 이를 통해 폐질환 관련 바이오마커와 다른 질병간의 관계를 파악하고자 히며, 의료 전문가에게 폐질환 관련 바이오마커와 다른 질병간의 새로운 관계를 제시하고자 한다. 이러한 데이터를 이용하여 계산한 결과, Wor2Vec의 결과를 이용한 코사인 유사도의 결과와 상관 계수가 약 0.64로 상당히 높은 상관 관계를 확인할 수 있었다. 따라서 이 방법을 통해 질병과 바이오마커의 관계를 파악하고자 하였다. 또한 Word2Vec을 이용한 질병과 바이오마커 단어의 벡터 값과 단어 유사도 계산 방법의 결과를 이용한 Deep Neural Networks (DNNs) 모델을 구축하고자 하며, 이를 통해 자동적으로 유사도를 분석하고자 하였다.

  • PDF

연구 보고서의 공기관계 정보에 제목 및 요약의 가중치를 적용한 유사도 계산 (Calculation of similarity by weighting title and summary in word co-occurrence of research reports)

  • 김남훈;주종민;박혁로;양형정
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.37-40
    • /
    • 2017
  • 본 논문에서는 국가 연구 보고서의 공기 관계 정보와 제목, 요약 등에 가중치를 적용한 유사도 계산방법을 제안한다. 이를 위해 국가 연구개발 보고서에서 텍스트를 추출하여 한 문장 단위로 문서를 분할하고, 기본 불용어와 보고서에서 특징적으로 나타나는 불용어를 처리하고 형태소 분석을 한 뒤 공기관계를 추출하였다. 또한 문서의 유사도 계산시 정확성을 높이기 위해 제목과 요약 부분에 가중치를 부여하였다. 이를 통해 본 논문에서 제안하는 방법이 문서 검색 라이브러인 루씬(Lucene)을 이용한 방법보다 2.5%의 검색성능 향상을 그리고 Knn-휴리스틱 방법보다는 1.1%의 검색성능 향상을 보였다. 이러한 결과를 통해 문서의 요약과 제목 그리고 공기관계 정보가 연구보고서의 유사도를 계산 하는데 영향을 미친다는 것을 보였다.

  • PDF

문서의 공기관계를 이용하여 국가 R&D 보고서간 유사도 계산 (Similarity calculation between national R&D reports using co-occurrence)

  • 김남훈;주종민;박혁로;양형정;최광남
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.201-204
    • /
    • 2016
  • 본 논문에서는 문서의 공기관계를 통해 추출된 문서의 특징을 이용하여 유사 보고서를 판별하는 시스템을 제안한다. 국가 R&D 보고서의 XML형식 파일에서 텍스트를 추출 후, 문장 단위로 나누어 각 문장의 공기관계를 추출한다. 그 후 공기관계의 노드와 엣지를 문서에 추가하고, 노드로 사용된 단어만 남기고 나머지 단어는 제외한다. 그리고 이것을 문서의 특징으로 삼고 유사도 계산을 한다. 이 때, 유사도 계산은 코사인 유사도를 사용한다. 실험결과, 국가 R&D문서 유사도 계산에서 제안된 방법이 기존의 방법보다 높은 분류율을 보여주었다.

  • PDF

문서의 공기관계를 이용하여 국가 R&D 보고서간 유사도 계산 (Similarity calculation between national R&D reports using co-occurrence)

  • 김남훈;주종민;박혁로;양형정;최광남
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.201-204
    • /
    • 2016
  • 본 논문에서는 문서의 공기관계를 통해 추출된 문서의 특징을 이용하여 유사 보고서를 판별하는 시스템을 제안한다. 국가 R&D 보고서의 XML형식 파일에서 텍스트를 추출 후, 문장 단위로 나누어 각 문장의 공기 관계를 추출한다. 그 후 공기관계의 노드와 엣지를 문서에 추가하고, 노드로 사용된 단어만 남기고 나머지 단어는 제외한다. 그리고 이것을 문서의 특징으로 삼고 유사도 계산을 한다. 이 때, 유사도 계산은 코사인 유사도를 사용한다. 실험결과, 국가 R&D문서 유사도 계산에서 제안된 방법이 기존의 방법보다 높은 분류율을 보여주었다.

  • PDF