• Title/Summary/Keyword: 유사글레이화

Search Result 2, Processing Time 0.015 seconds

A study on the change of chemical composition of sediment particles of terrace deposits - A case of fine sediments at Jeongdongjin area - (단구 퇴적층의 화학 조성 변화에 대한 연구 - 정동진 단구의 세립 물질을 사례로 -)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.29-45
    • /
    • 2016
  • Chemical composition of fine sediments from Jeongdongjin area are analyzed with XRF method. The results are compared with previously reported results of sandstones of the nearest Simgok port. The weight percentage of $SiO_2$ of the samples are far lower than those of sandstones of Simgok. It is supposed to be happened by the selective elution of $SiO_2$ from the sediment layer of coastal terrace, as there's no evidence of selective input or precipitation of other elements from outside. As a result of chemical alteration or weathering of sediment at coastal terrace, weight percentage of $Al_2O_3$ and $Fe_2O_3$ of samples show far higher values than those of Simgok sandstone. In addition, the relative portion of $Al_2O_3$ and $Fe_2O_3$ are decreased to upward within outcrop of terrace sediment layers. It could be caused by the chemical weathering progress with time. However Chemical Index of alteration(CIA) of sediment samples are no larger than 90 and it could be interpreted that it would take over 100ka for total weathering of sediment in this area. Meanwhile the ratio of $SiO_2/Al2O_3$ of terrace sediment showed as 3.48~6.0 and it is far smaller than those of Simgok sandstones(23.9~49.0). The ratio of $SiO_2/Fe_2O_3$ of terrace sediment(19.19~55.85) showed similar pattern with $SiO_2/Al2O_3$ (Simgok sanstone: 119.6~601.8). The ratios have a weak trend of decreasing upwards within the outcrop, there also a huge difference in value among the samples. Chemical composition of reddish brown and gray layers which suspected as the result of psudogleization reveals that reddish brown parts have higher concentration of $Fe_2O_3$ than other parts, while there was no significant difference in concentration of $Al_2O_3$ and CaO.

A study on the granulometric and clastshape characteristic of gravel terrace deposit at Jeongdongjin area (정동진 단구 자갈층과 충진 물질의 입도 및 형상 특성에 대한 연구)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.17-33
    • /
    • 2016
  • Samples from newly exposed outcrop of sedimentary layers forming Jeongdongjin coastal terrace in Gangreung area are collected and analyzed to find the sedimentary environment. The site are located at the gentle hillslope of the terrace surface area. The height of the outcrop is about 8m and the altitude of it's highest part is 68~73m MSL. The lowest part of this out crop is the partly consolidated sand layer with gravel veneer within it. It is found that this part is not in-situ weathered sand stone through the OSL method. This sand layer is overlain by the gravel layer with sand matrix. The shapes of the gravels from this part are mainly 'platy', 'elongated', and 'bladed' by the index of Sneed and Folk(1958). In addition, mean roundness is not so high. It is sceptical to regard this part as marine sediments which are continuously exposed to erosional processes. The boundary between the lowest sand layer and gravel layer showing the abrupt change in forming material without any mixture or transitional zone, so gravels are seemed to deposited after some degree of consolidation of the lowest sand layer. In addition, the hight of the boundary between layers are changed by the place, so the surface of the partly consolidated sand layer is not flat and has irregularity on topography when it buried by gravels. Main part of this out crop is the poorly sorted coarse gravel(22.4mm) with sand matrix($1.36{\phi}$) layer with at least 2m thick covering the relatively fine gravels discussed above. Over 20% of particles have 'very platy', 'very elongated' and 'very bladed' shape and only less than 5% of particles have 'compact' shape, So this particles are also very hard to be regard as marine gravels which are abraded by marine processes. It can be concluded that this gravel layer formed by fluvial processes rather than coastal processes base on the form of the clast and sedimentary structure. The gravel layer is covered by fine($3{\sim}4{\phi}$) material layers of psudo-gleization which showing inter-bedding of red and white layers. Chemical composition of matrix and other fine materials should be analyzed in further studies. It is attempted to fine the burial ages of the sediment using OSL method, but failed by the saturation. So it can be assumed that these sediments have be buried over 120ka.