• Title/Summary/Keyword: 유비쿼터스 모바일

Search Result 532, Processing Time 0.017 seconds

Multi-Attribute based on Data Management Scheme in Big Data Environment (빅 데이터 환경에서 다중 속성 기반의 데이터 관리 기법)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.13 no.1
    • /
    • pp.263-268
    • /
    • 2015
  • Put your information in the object-based sensors and mobile networks has been developed that correlate with ubiquitous information technology as the development of IT technology. However, a security solution is to have the data stored in the server, what minimal conditions. In this paper, we propose a data management method is applied to a hash chain of the properties of the multiple techniques to the data used by the big user and the data services to ensure safe handling large amounts of data being provided in the big data services. Improves the safety of the data tied to the hash chain for the classification to classify the attributes of the data attribute information according to the type of data used for the big data services, functions and characteristics of the proposed method. Also, the distributed processing of big data by utilizing the access control information of the hash chain to connect the data attribute information to a geographically dispersed data easily accessible techniques are proposed.

A Smoothing Data Cleaning based on Adaptive Window Sliding for Intelligent RFID Middleware Systems (지능적인 RFID 미들웨어 시스템을 위한 적응형 윈도우 슬라이딩 기반의 유연한 데이터 정제)

  • Shin, DongCheon;Oh, Dongok;Ryu, SeungWan;Park, Seikwon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.1-18
    • /
    • 2014
  • Over the past years RFID/SN has been an elementary technology in a diversity of applications for the ubiquitous environments, especially for Internet of Things. However, one of obstacles for widespread deployment of RFID technology is the inherent unreliability of the RFID data streams by tag readers. In particular, the problem of false readings such as lost readings and mistaken readings needs to be treated by RFID middleware systems because false readings ultimately degrade the quality of application services due to the dirty data delivered by middleware systems. As a result, for the higher quality of services, an RFID middleware system is responsible for intelligently dealing with false readings for the delivery of clean data to the applications in accordance with the tag reading environment. One of popular techniques used to compensate false readings is a sliding window filter. In a sliding window scheme, it is evident that determining optimal window size intelligently is a nontrivial important task in RFID middleware systems in order to reduce false readings, especially in mobile environments. In this paper, for the purpose of reducing false readings by intelligent window adaption, we propose a new adaptive RFID data cleaning scheme based on window sliding for a single tag. Unlike previous works based on a binomial sampling model, we introduce the weight averaging. Our insight starts from the need to differentiate the past readings and the current readings, since the more recent readings may indicate the more accurate tag transitions. Owing to weight averaging, our scheme is expected to dynamically adapt the window size in an efficient manner even for non-homogeneous reading patterns in mobile environments. In addition, we analyze reading patterns in the window and effects of decreased window so that a more accurate and efficient decision on window adaption can be made. With our scheme, we can expect to obtain the ultimate goal that RFID middleware systems can provide applications with more clean data so that they can ensure high quality of intended services.