• Title/Summary/Keyword: 유분리기

Search Result 142, Processing Time 0.022 seconds

Development of Crushing Device for Whole Crop Silage and the Characteristics of Crushed Whole Crop Silage (총체맥류 분쇄기 개발 및 분쇄 총체맥류 사일리지의 품질 특성)

  • Lee, Sunghyoun;Yu, Byeongkee;Ju, Sunyi;Park, Taeil
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.344-349
    • /
    • 2016
  • This study was conducted to evaluate the possibility of expanding the usage of whole crop silage from beef cattle and dairy cow to hogs and chickens. For this purpose, a crushing device was developed to crush whole crop silage. The crushed silage was sealed, and analyzed for its feed value. The silage varieties used for the experiment included Saessal barley and Geumgang wheat. Whole crop barley and wheat were crushed in the crushing system as a whole without separating stems, leaves, grains, etc.. When the crushed whole crop silages (CWCS) were analyzed, full grain, grains above 10 mm in size, grains 5~10 mm in size, and grains below 5 mm in size accounted for, 20%, 4%, 27%, and 49 %, respectively. In order to facilitate the fermentation of CWCS, inoculated some fermenter into each CWCS sample (barley or wheat). As control, another set of sample was not inoculated. Crude protein (CP), ether extract (EE), crude fiber (CF), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, cellulose content, total digestible nutrient (TDN), and relative feed value (RFV) of fermenter-inoculated Saessal barley were 2.45 %, 1.61%, 8.95%, 16.94%, 9.52%, 1.01%, 8.51%, 81.38%, and 447.5%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV in the other sample of Saessal barley without inoculation of fermenter were 2.57%, 1.62%, 9.61%, 18.25%, 10.13%, 1.10%, 9.04%, 80.90%, and 412.9%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, and RFV of fermenter-inoculated Geumgang wheat sample were 2.43%, 1.27%, 10.99%, 19.49%, 11.23%, 1.46%, 9.77%, 80.03%, and 382.6%, respectively. The CP, EE, CF, NDF, ADF, lignin, cellulose content, TDN, RFV of the other set sample of Geumgang wheat sample without the inoculation of fermenter were 2.28%, 1.44%, 10.08%, 18.02%, 10.44%, 1.26%, 9.18%, 80.65%, and 416.9%, respectively. The TDN and RFV content in the fermenter-inoculated Saessal barley were 81.38% and 447.5%, respectively, while the one in the fermenter-inoculated Geumgang wheat were 80.03% and 382.6% respectively. When the feed value of whole crop barley and wheat silage without crushing process was compared to the feed value of whole crop barley and wheat silage made from crushing system, the latter appeared to be higher than the former. This could be due to the process of sealing the crushed silage which might have minimized air content between samples and shortened the golden period of fermentation. In conclusion, these results indicate that a crushing process might be needed to facilitate fermentation and improve the quality of silage when making whole crop silage.

Studies on the Biochemical Features of Soybean Seeds for Higher Protein Variety -With Emphasis on Accumulation during Maturation and Electrophoretic Patterns of Proteins- (고단백 대두 품종 육성을 위한 종실의 생화학적 특성에 관한 연구 -단백질의 축적과 전기영동 유형을 중심으로)

  • Jong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.22 no.1
    • /
    • pp.135-166
    • /
    • 1977
  • Some biochemical features of varietal variation in seed protein and their implications for soybean breeding for high protein were pursued employing 86 soybean varieties of Korea, Japan, and the U.S.A. origins. Also, studied comparatively was the temporal pattern of protein components accumulation during seed development characteristic to the high protein variety. Seed protein content of the 86 soybean varieties varied 34.4 to 50.6%. Non-existence of variety having high content of both protein and oil, or high protein content with average oil content as well as high negative correlation between the content of protein and oil (r=-0.73$^{**}$) indicate strongly a great difficulty to breed high protein variety while conserving oil content. The total content of essential amino acids varied 32.82 to 36.63% and the total content of sulfur-containing amino acids varied 2.09 to 2.73% as tested for 12 varieties differing protein content from 40.0 to 50.6%. The content of methionine was positively correlated with the content of glutamic acid, which was the major amino acid (18.5%) in seed protein of soybean. In particular, the varieties Bongeui and Saikai #20 had high protein content as well as high content of sulfur-containing amino acids. The content of lysine was negatively correlated with that of isoleucine, but positively correlated with protein content. The content of alanine, valine or leucine was correlated positively with oil content. The seed protein of soybean was built with 12 to 16 components depending on variety as revealed on disc acrylamide gel electrophoresis. The 86 varieties were classified into 11 groups of characteristic electrophoretic pattern. The protein component of Rm=0.14(b) showed the greatest varietal variation among the components in their relative contents, and negative correlation with the content of the other components, while the protein component of Rm=0.06(a) had a significant, positive correlation with protein content. There was sequential phases of rapid decrease, slow increase and stay in the protein content during seed development. Shorter period and lower rate of decrease followed by longer period and higher rate of increase in protein content during seed development was of characteristic to high protein variety together with earlier and continuous development at higher rate of the protein component a. Considering the extremely low methionine content of the protein component a, breeding for high protein content may result in lower quality of soybean protein.n.

  • PDF