• Title/Summary/Keyword: 유리 변형

Search Result 354, Processing Time 0.028 seconds

Stress-strain Relations of Concrete Confined with Tubes Having Varying GFRP Layers (수적층 및 필라멘트 와인딩을 이용한 GFRP튜브로 구속된 콘크리트의 압축 거동)

  • Lee, Sung Woo;Choi, Sokhwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.861-872
    • /
    • 2008
  • Concrete-filled glass fiber reinforced polymer tubes are often used for marine structures with the benefit of good durability and high resistance against corrosion under severe chemical environment. Current research presents results of a comprehensive experimental investigation on the behavior of axially loaded circular concrete-filled glass fiber reinforced polymer tubes. This paper is intended to examine several aspects related to the usage of glass fiber fabrics and filament wound layers used for outer shell of piles subjected to axial compression. The objectives of the study are as follows: (1) to evaluate the effectiveness of filament winding angle of glass fiber layers (2) to evaluate the effect of number of GFRP layers on the ultimate load and ductility of confined concrete (3) to evaluate the effect of loading condition of specimens on the effectiveness of confinement and failure characteristics as well, and (4) to propose a analytical model which describes the stress-strain behavior of the confined concrete. Three different types of glass fiber layers were chosen; fabric layer, ${\pm}45^{\circ}$ filament winding layer, and ${\pm}85^{\circ}$ filament winding layer. They were put together or used independently in the fabrication of tubes. Specimens that have various L:D ratios and different diameters have also been tested. Totally 27 GFRP tube specimens to investigate the tension capacity, and 66 concrete-filled GFRP tube specimens for compression test were prepared and tested. The behavior of the specimens in the axial and transverse directions, failure types were investigated. Analytical model and parameters were suggested to describe the stress-strain behavior of concrete under confinement.

Structure of SrO-B2O3-Al2O3 and SrO-B2O3-SiO2 glasses Using 11B Nuclear Magnetic Resonance (11B NMR 방법에 의한 SrO-B2O3-Al2O3와 SrO-B2O3-SiO2 유리들의 구조에 관한 연구)

  • Moon, Seong-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.19-25
    • /
    • 2002
  • Ternary $xSrO-yB_2O_3-0.1Al_2O_3$ and $xSrO-yB_2O_3-0.1SiO_2$ glasses were prepared as a function of R(${\equiv}x/y$). The fraction of four-coordinated brans ($N_4$), symmetric three-coordinated barons ($N_{3S}$), and asymmetric three-coordinated barons ($N_{3A}$) were determined quantitatively to study the structures of these glasses by $^{11}B$ NMR. The values of $Q_{cc}$ and ${\eta}$ for $BO_3$ unit in the glasses were 2.74MHz and 0.22, those for $BO_3{^-}$ unit were 2.54MHz and 0.55, and those for $BO_4$ unit 0.60~0.75MHz and 0.00, respectively. The structure of SrBAl glass at $R_{1st}$ consisted of tetraborate ($[B_8O_{13}]^{-2}$) units and 1st-modified diborate ($[B_2Al_2O_7]^{-2}$) units, and those for the glass at $R_{max}$consisted of diborate ($[B_4O_7]^{-2}$) units, metaborate ($[BO_2^{-1}]$), 1st-modified diborate units, and 2nd-modified diborate ($[B_2Al_2O_8]^{-4}$) units. Due to the oxygens introduced from the strontium oxide. $AlO_4$ units were preferably formed rather than $BO_4$ units. And, the structure of SrBSi glasses in the region $R{\leq}0.5$ could be viewed as binary $SrO-B_2O_3$ glasses structure diluted by silicate oxide: therefore, the Si atoms of the glasses did not contributed to the change the configuration around the boron atoms. The silicate oxide was formed the $SiO_4{^-}$ units rather than the $BO_3{^-}$ units by the oxygens introduced from the storntium oxide in the region of $R{\geq}R_{max}$, and structure of those glass at $R_{max}$ consisted of diborate units, metaborate units loose $BO_4([BO_2]^{-1})$, and $SiO_4{^-}([SiO_{2.5}]^{-1})$ units.

  • PDF

A Safety Evaluation on the Ring Deflection of Buried GRP Pipes (지중매설 유리섬유복합관의 관변형에 관한 안전성 평가)

  • Park, Joon-Seok;Kim, Sun-Hee;Kim, Eung-Ho;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.26-33
    • /
    • 2011
  • Recently, the use of buried glass fiber reinforced plastic (GRP) pipes is widespread and ever increasing trend in the industry. GRP pipes are attractive for use in harsh environments, such as for the collection and transmission of liquids which are abrasive and/or corrosive. The structural behavior of a GRP pipes buried under the ground is different from that of a rigid one made of concrete or clay, for example. A GRP pipe buried under the ground is deflected circumferentially by several percent and the stresses in the pipe are mainly compressive stresses. A GRP pipes has been introduced by a number of manufacturers for selection and used by underground pipeline designers. In all cases, the modified Spangler's equation is recommended by these manufacturers for predicting the ring deflection of these pipes under dead and live loads. In this paper, the ring deflection of buried GRP pipe is evaluated and discussed based on the result of analytical investigation.

Microstructure and annealing effect on fracture behavior in the dental glass-infiltrated alumina (치아용 유리침윤 알루미나에서 파괴거동에 미치는 미세구조 및 어닐링 효과)

  • 정종원;최성철
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.330-336
    • /
    • 2000
  • Effects of microstructure and indentation stress on fracture behavior of glass-infiltrated alumina composite for dental restorative application were investigated by the Hertzian and Vickers indentation method. Indentation stress-strain curve of glass-infiltrated alumina has showed the quasi-plastic behavior - deviation from linearity at high stress and the classical Hertzian cone crack, which could be confirmed the subsurface damage micrographs using bonded-interface specimen technique. The indentation stress-strain curves for the starting preforms are strongly dependent on porosity and microstructure of the preforms. On the other hand, the curves for the infiltrated composites are relatively insensitive to these factors. The failure of composite is originated at quasi-plastic deformation region. Damage and fracture behavior due to Hertzian stress field is theoretically examined, so that the indentation stress field plays a great role in material degradation. After Hertzian indentation annealing processing changes fracture behavior of alumina composite, so that stress field in material is healed through annealing.

  • PDF

An Experimental Study on the Fatigue Behaviors Strengthened by Ventilation-Glass Fiber Plate of Reinforced Concrete Beams (철근콘크리트 보의 통기성 유리섬유판 보강에 따른 피로거동에 관한 실험적 연구)

  • Kim, Woonhak;Kang, Seokwon;Shin, Chunsik
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.4
    • /
    • pp.391-400
    • /
    • 2012
  • Recently, the construction industry commonly uses FRP as a reinforcement material because of its material advantages. FRP attached reinforcement has various advantages such as high strength, stiffness, excellent durability and construction practicability comparing to its weight. However, external attachment of FRP is water-tighted with low water permeable material, not draining water, probably causing damages on a permanent structure. The study manufactured it through pultrusion and examined GP(glass fiber panel) of which material-mechanical properties are almost same as the existing FRP but durability and attachment performance are better by stationary experiments, testing load-deflection curve, destruction types and load-deflection relation under repetitive loading test. As a result of 2,000,000 fatigue tests, it did not result in the destruction and showed excellent permanent attachment and durability as it displays significantly low compressive strain of concrete.

Application of Earth Natural Grouting Using Micro Cement and Inorganic material (마이크로시멘트 무기질계 그라우팅 ENG의 적용성 연구)

  • Jung, Min-Hyung;Kim, Yong-Sik;Jung, Chun-Hak;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.109-116
    • /
    • 2010
  • The Water glass grouting method has been applied frequently to penetration grouting in practice, but some problems, such as decrease of durability with the elapsed time and environmentally adverse effect, are raised recently. Hence, the Earth Natural Grouting method which uses micro cement and inorganic material is developed to overcomes those problems of the water glass grouting method, and is aimed for extensive ground injection bound. Volumetric strain test, syneresis test, unconfined compression test, triaxial permeability test, in-situ permeability test and heavy metal analysis were conducted to verify application of the ENG. As the result of tests, volumetric strain, syneresis and unconfined strength of the ENG were superior to those of the Water Glass SGR and ENG was proved to be impermeable. Also it is expected that the ENG would not have an effect on environmental pollution.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

Application of Modelling Stress-Strain Relations (Part I) -Application to Plane Strain Compression Tests- (응력-변형률 관계 정식화의 적용성(I) -평면변형률압축시험에 대한 적용성-)

  • Park, Choon-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.17-25
    • /
    • 2012
  • FEM requires the stress-strain relationship equations for numerical analyses. However, most formulations for the stress-strain relationship published up to the present are not satisfactory enough to properly express all the levels from the small strain to the peak. Tatsuoka and Shibuya (1991) suggested a new single formulation applicable not only to a wide range of geo-materials from soft clay to soft rock, but also to a wide range of strain levels from $10^{-6}$ to $10^{-2}$. The plain strain compression test is carried out to seven samples of research standard sand specimens and two samples of glass beads, which have been used at world-renowned research institutes. In this study, strains of the maximum principal stress (${\sigma}_1$) and the minimum principal stress (${\sigma}_3$) were thoroughly measured from $10^{-6}$ to $10^{-2}$, and the result, applied to Tatsuoka and Shibuya's new formulation, coincided closely with the measured data of the stress-strain relationship from the small strain to the peak.