• 제목/요약/키워드: 유리섬유 강화 열가소성 플라스틱

검색결과 5건 처리시간 0.018초

유리 섬유/열가소성 복합 재료의 기계적 및 함침 특성에 대한 직물 패턴의 영향 (Effect of Textile Pattern on Mechanical and Impregnation Properties of Glass Fiber/Thermoplastic Composite)

  • 김늘새롬;이은수;장영진;권동준;양성백;염정현
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.317-322
    • /
    • 2018
  • 다양한 산업군에서 복합재료를 적용한 제품개발을 진행하고 있는 상황이며, 재활용이 가능한 장점으로 인해 열가소성 복합재료에 대한 개발이 활발하다. 장섬유 강화 열가소성 플라스틱(Long fiber thermoplastic, LFT)의 형태도 있지만, 연속섬유를 이용한 열가소성 복합재료(Continuous fiber thermoplastic, CFT)에 대한 활용도 증가하고 있다. 본 연구에서는 CFT를 제작할 때 사용되는 강화섬유의 제직 패턴에 따른 영향으로 CFT의 인장, 굴곡, 충격 강도의 변화를 확인하고자 하였다. 복합재료의 물성이 강화섬유의 제직 패턴에 의해 달라지는 원인을 기계적인 물성으로도 평가하였고, CT 촬영기법을 이용하여 내부 기공발생과 섬유 제직패턴과의 상관관계를 분석하였다. CFT의 경우 열가소성 필름이 섬유 로빙 내로 함침되는 수준이 낮기 때문에, 공극의 발생률이 높은 문제가 있다. 섬유 로빙과 로빙사이의 계면이 $100{\mu}m$ 수준으로 조밀하게 형성될 수 있는 평직 섬유 패턴이 CFT의 성형성 및 기계적 물성을 안정화시키는 강화섬유의 조직임을 검증하였다.

충격에 의해 손상된 섬유강화 열가소성 수지 복합재료의 재활용 횟수에 따른 물성의 변화 (The Influence of Mechanical Properties with the Number of Recycling of Fiber-reinforced Thermoplastic Composites Damaged by Impact)

  • 배곽진;이준석
    • Composites Research
    • /
    • 제35권2호
    • /
    • pp.75-79
    • /
    • 2022
  • 본 연구에서는 충격에 의해 파손된 열가소성 유리 섬유 강화 복합재료의 재성형을 통한 물성변화를 조사하였다. 복합재료 시편은 유리섬유 부직포와 폴리프로필렌 필름을 이용하여 핫 프레스 압축 성형 공정을 통해 제작하였다. 총 3번의 낙하 충격 테스트를 진행하였으며, 시편의 물성을 확인하기 위하여 인장시험, 굽힘시험, 낙하충격시험, 시차주사열량계, 주사전자현미경 측정을 진행하였다. 그 결과, 재활용 단계가 반복될수록 결정화도, 인장강도, 탄성계수, 굴곡강도는 증가하였으나 충격특성은 크게 감소하였다.

자동차 전조등 광원 모듈용 유리섬유강화 PPS 복합재료 특성 연구 (A Study on Properties of the Glass Fiber Reinforced PPS Composites for Automotive Headlight Source Module)

  • 허광열;박성민;이은수;김명순;심지현;배진석
    • Composites Research
    • /
    • 제29권5호
    • /
    • pp.293-298
    • /
    • 2016
  • 본 연구에서는 PPS(Polyphenylene sulfide) 수지와 단면이 원형(round type), 누에형(cocoon type), 플랫형(flat type)인 3종류의 유리섬유를 사용하여 컴파운딩 및 사출을 통해 차량 전조등 광원 모듈용 유리섬유 강화 열가소성 플라스틱(glass fiber reinforced thermoplastic : GFRTP)을 제조하였다. 섬유 단면형태 및 함유량에 따른 효과를 알아보기 위해 인장, 굴곡, 충격 특성을 평가하였고, 단면에 따른 유동성, 형태안정성 및 평탄성을 관찰하였다. 그 결과 플랫 단면의 유리섬유를 사용했을 때 기계적 특성이 가장 우수했고 섬유함유량이 증가할수록 강도가 향상되는 경향을 보였다. 또한, 형태안정성, 평탄성의 경우에도 플랫 단면 섬유 사용 시 더 좋은 결과를 나타내었다.

섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구 (A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP)

  • 김경진;엄상용;김기환
    • 한국화재소방학회논문지
    • /
    • 제33권3호
    • /
    • pp.21-28
    • /
    • 2019
  • 본 연구에서는 섬유강화 열가소성 플라스틱 복합재료(Fiber Reinforced thermo plastics, FRTP)의 기계적 특성 및 화재 위험성 예측을 위한 연소특성을 평가하였다. 폴리카보네이트와 나일론에 섬유강화재로 유리섬유와 탄소섬유를 각각 0~40 wt% 혼합하여 특성변화를 실험한 결과, 섬유강화재의 함유율이 증가할수록 비강도와 열변형 온도가 증가하였고 난연성은 유리섬유 함유율이 30 wt% 이상인 경우 V-0 등급을 보였다. 연소특성의 경우 섬유강화재의 함유율이 증가함에 따라 착화시간도 비례하여 증가하였으며, 최대 열방출율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 51%, 나일론은 약 24% 수준으로 낮아졌다. CO 발생율은 일정시간까지 감소하다가 증가하는 경향을 보이며, 이는 시간이 지남에 따라 불완전연소에 의한 것으로 판단된다. CO2 발생율은 열방출율과 매우 유사한 경향을 보이며, 최대 CO2 발생율은 섬유강화재를 40 wt% 함유 시 함유하지 않았을 때보다 폴리카보네이트는 약 50%, 나일론은 약 28% 수준으로 낮아졌다.

첨가제 배합 및 압력에 따른 GFRTP의 기계적 특성 연구 (Study of the Mechanical Properties of GFRTP by Pressure Additives and Compounding)

  • 오승민;김종수;설균호;윤예지;김영민;양동수;노수진;이규세;강성수
    • 한국자동차공학회논문집
    • /
    • 제22권6호
    • /
    • pp.9-13
    • /
    • 2014
  • Glass fiber reinforced thermoplastics(GFRTP) is made by adding chemical additive to glass fabric which is strong at a high temperate, incorrodible, and good at intensity and specific gravity. Although we focused on the weight lightening, the intensity of GFRTP is also important. To remedy thermoplastic resin's inferior property of matter to thermo-hardening resin, we formed several specimen, differing the chemical additive as Homo PP, MAPP 3%, Rubber 5%, and mixed. We put pressure of 5 type on the specimens. The analyses result for the different pressure, the resin spreads evenly, then the coherence is increased. Eventually, the mechanical properties are changed. When high intensity is needed, it is good idea to use polypropylene(PP) which has good coherence with glass fabric as chemical additive. We can get better intensity when we form the resin at the optimum pressure depending on mixing of chemical additive and glass fabric than when we increase the pressure.