이 연구는 유러닝 이용 교육에서 신기술의 발전에 따라 나타나는 특정과 문제점들을 사례를 분석하여 연구하였다. 이러한 유비쿼터스 환경에서 인간은 컴퓨터 능력을 갖고 있는 장치와 상호 교류가 가능하며, 유러닝을 통해 학생들은 열린 자세를 갖으며 스스로 공부하는데 동기부여를 갖게 된다. 이는 학습과 의사소통을 효율적으로 할 수 있게 하며, 시간과 비용 에너지를 절약 할 수 있게 한다. 국내 외 사례에서 살펴보았듯이 유러닝의 발전을 도모하기 위해서는 여러 가지 측면에서 고려되어야 할 것이지만, 교육, 학습태도, 관습, 인간관계 등에 있어 현재 보다 훨씬 광범위하게 수집되어 오용되거나 유출되는 문제를 반드시 해결해야 할 분야이다. 이를 위해 법이나 제도 그리고 윤리적 관점에서 고려되어야 할 것으로 본다.
본 논문은 유튜브에 업로드 된 운동 영상을 시청하는 사람의 얼굴 영역을 YoloV3을 이용하여 얼굴 영상에서 눈 및 입술영역을 검출하는 방법을 연구하여, YoloV3은 딥 러닝을 이용한 물체 검출 방법으로 기존의 특징 기반 방법에 비해 성능이 우수한 것으로 알려져 있다. 본 논문에서는 영상을 다차원적으로 분리하고 클래스 확률(Class Probability)을 적용하여 하나의 회귀 문제로 접근한다. 영상의 1 frame을 입력 이미지로 CNN을 통해 텐서(Tensor)의 그리드로 나누고, 각 구간에 따라 객체인 경계 박스와 클래스 확률을 생성해 해당 구역의 눈과 입을 검출한다. 검출된 이미지 감성 분석을 통해, 운동 영상 중 하이라이트 부분을 자동으로 선별하는 시스템을 설계하였다.
음식 문화 및 산업과 관련한 대표적 특징들 중에는 음식 배달 주문 산업이 성장하고 있다는 것과 유튜브와 같은 1인 미디어에서의 소위 '먹는 방송' (먹방)이 최고의 인기 콘텐츠로 자리 잡았다는 사실 등을 거론할 수 있다. 본 연구는 이러한 배경에 근거하여 두가지 초점을 두어 연구하고자 하였다. 먼저, 유튜브 먹방과 먹방 댓글에서 확인되는 대중들의 감성이 관련 음식의 배달 이용 건수에 영향을 미치는지를 회귀분석 모형을 통하여 확인하고자 하였다. 다음으로, 대한민국에서 대표적인 주문 음식인 치킨의 배달 이용 건수 데이터와 유튜브 먹방 댓글 데이터와 날씨 데이터를 활용하여, 머신 러닝을 통한 치킨 배달 주문 예측 모형을 구현하였다. 2015년 6월 3일부터 2019년 9월 30일까지 총 1,580개의 데이터를 활용하였고, 날씨 변수로서의 온도, 습도, 강수량과 유튜브 먹방 변수로의 영상에 달린 댓글 수, 댓글의 긍정어 수, 중립어 수, 부정어 수 등을 수집하였다. 본 연구에 활용된 데이터의 유튜브 먹방과 먹방 댓글의 감성이 배달 이용 건수에 영향 미침을 확인하기위해 선형 회귀 방법론을 사용하였으며, 예측모델을 위해 사용된 머신 러닝은 Linear Regression, Ridge, Lasso, Random Forest, Gradient Boost이다. 본 연구를 통해 유튜브 먹방과 댓글의 감성이 배달 이용 건수에 영향 미침을 확인하였고 예측 모형 또한 기존 모델보다 성능이 좋아짐을 Root Mean Square Error 값을 통하여 확인하였다. 본 연구는 먹방의 광고 효과를 확인하였으며, 배달 업종에서의 경영에 활용할 수 있는 함의를 제공하고자 하였다.
기존 초음파 지방간 분석은 Hepatorenal sonographic index(HI)를 사용하여 지방간을 진단하여 왔다. 이러한 HI 기법에서는 Hepato(간)과 Renal(신장), 두 부분의 영상데이터를 비교 활용하였다면, 본 논문에서는 신장의 영상데이터만을 이용하여, 이의 통계적 특징 벡터만을 활용하여 지방간을 진단을 함으로서 기존의 HI기반 분석대비 편리성과 정확도를 개선코자 Kidney Index(KI) 기반의 분석 기법을 제안한다. 본 논문에서 제안된 KI는 정상간과 지방간을 가진 실제 환자의 초음파 사진(정상간, 지방간 각 30명)을 학습 데이터를 구성하고, 이들 데이터군으로부터 특징 벡터들을 선별하여 머신러닝 기법 중 서포트 벡터 머신(Support Vector Machine)을 통해 학습시켜, 제안된 알고리즘의 유효성을 입증하였다.
2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.
본 연구는 유튜브를 활용한 기초조리실습교과목에 플립드러닝 교수학습방법을 적용하여 학습 전과 후에 따른 효과를 파악하고 학습과정을 통해 학습자의 주관적인 인식을 분석하여 교육과정이 적절히 진행되고 있는지에 대해 연구하고자 한다. 조사기간은 2020년 08월 01일부터 09월 10일까지 진행되었으며, Q방법론의 연구 설계에 따라 Q표본 선정, P표본 선정, Q소팅, 코딩과 리쿠르팅, 결론 및 논의로 총 5단계로 구분하여 진행하였다. 분석결과 제 1유형(N=5) : 선행학습 효과(Prior Learning effect), 제 2유형(N=7) : 시뮬레이션실습효과(Simulation practice effect), 제 3유형(N=3) : 자기효능감 효과 (self-efficacy effect)로 각각 고유의 특징을 가진 유형으로 분석되었다. 결과적으로 유튜브를 활용한 기초조리실습과목의 플립드러닝 교수학습방법을 적용함으로서 적극적인 학습자들에게는 수업의 흥미유발, 자신감 상승 등의 긍정적인 효과가 나타났으나 일부 학습자의 경우 수업운영방식의 시스템이해 부족, 타 과목에 비해 실습회수 부족 등은 추후 해결되어야 할 방안으로 사료된다.
바르지 못한 앉은 자세는 다양한 질병과 신체 변형을 유발한다. 하지만 오랜 시간동안 바른 앉은 자세를 유지하는 것은 쉬운 일이 아니다. 이러한 이유 때문에 그동안 자동으로 바른 앉은 자세를 유도하기 위한 다양한 시스템이 제안되어왔다. 이전에 제안되었던 앉은 자세 판별 및 바른 앉은 자세 유도 시스템은 영상 처리를 이용한 방법, 의자에 압력센서를 달아 측정하는 방법, IMU(Internal Measurement Unit)를 이용한 방법이 있었다. 이 중 IMU를 이용한 측정 방법은 하드웨어 구성이 간단하고, 공간, 광량 등의 환경적 제한이 적어 측정에 있어서 용이한 이점이 있었다. 본 논문에서는 하나의 IMU를 이용하여 적은 데이터로 효율적으로 앉은 자세를 분류하는 방법을 연구하였다. 특징추출 기법을 이용하여 데이터 분류에 기여도가 낮은 데이터를 제거하였으며, 머신러닝 기법을 이용하여 앉은 자세 분류에 적합한 센서 위치를 찾고, 여러 개의 머신러닝 모델 중 가장 분류 정확도가 높은 머신러닝 모델을 선정하였다. 특징추출 기법은 PCA(Principal Component Analysis)를 사용하였고, 머신러닝 모델은 SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model)모델을 사용하였다. 연구결과 데이터 분류율이 높게나온 뒷목이 적합한 센서 위치가 되었으며, 센서 데이터 중 Yaw데이터는 분류 기여도가 가장 낮은 데이터임을 PCA 특징추출 기법을 이용하여 확인하고, 제거하여도 분류율에 영향이 매우 작음을 확인하였다. 적합 머신러닝 모델은 SVM, KNN 모델로 다른 모델에 비하여 분류율이 높게 나오는 것을 확인할 수 있었다.
여행 마케팅 분야에서 브이로그와 같은 동영상 기반 소셜미디어 컨텐츠의 중요성이 높아지고 있다. 그럼에도 불구하고 시청자 반응 및 참여 행동을 향상시키는 콘텐츠 특징에 대한 연구는 제한적이다. 본 연구는 유튜브 여행 콘텐츠의 나타난 감정이 시청자 참여 행동, 특히 "좋아요"와 "댓글" 작성에 미치는 영향을 연구하였다. 본 논문에서는 방문자 수가 높은 세계 8개 관광도시에 관한 여행 관련 유튜브 동영상 4,619개의 나래이션을 머신러닝으로 추출하여 텍스트화 한 후 음이항 회귀분석을 통해 분석하였다. 그 결과 긍정 감정 및 부정의 감정 모두 "좋아요" 수에 유의한 영향을 미쳤다. 즉, 동영상에서 나타난 긍정적인 감정과 부정적인 감정이 각각 높을수록 더 많은 시청자들이 "좋아요"를 클릭하는 것으로 나타났다. 댓글 수에 측면에서는 부정적인 감정만 유의한 영향을 보인 반면 긍정적인 감정은 유의한 영향을 미치지 않는 것으로 나타났다. 본 연구는 경험재인 여행 상품의 고유한 특성을 고려할 때 유튜브에서 시청자 참여를 높이고자 하는 마케터들에게 어떠한 동영상 특징이 "좋아요"와 댓글등의 참여 행동을 유도할 수 있는지를 이해하고 전략 수립에 도움을 준다는 면에서 시사하는 바가 크다. 또한 소셜 미디어, 특히 유튜브의 맥락에서 시청자 참여도에 미치는 감정의 영향력을 검증하였다. 향후에는 감정에 대한 긍정-부정의 분류를 넘어 특정 감정이 참여도에 미치는 영향에 대한 고찰을 통해 소셜 미디어 동영상에 나타난 감정의 역할에 대한 이해를 깊이 할 수 있을 것이다.
사람이 어떤 문장을 보고 그 문장에 대해 이해하는 것은 문장 안에서 주요한 단어를 이미지로 연상시켜 그 문장에 대해 이해한다. 이러한 연상과정을 컴퓨터가 할 수 있도록 하는 것을 text-to-image라고 한다. 기존 딥 러닝 기반 text-to-image 모델은 Convolutional Neural Network(CNN)-Long Short Term Memory(LSTM), bi-directional LSTM을 사용하여 텍스트의 특징을 추출하고, GAN에 입력으로 하여 이미지를 생성한다. 기존 text-to-image 모델은 텍스트 특징 추출에서 기본적인 임베딩을 사용하였으며, 여러 모듈을 사용하여 이미지를 생성하므로 학습 시간이 오래 걸린다. 따라서 본 연구에서는 자연어 처리분야에서 성능 향상을 보인 어텐션 메커니즘(Attention Mechanism)을 문장 임베딩에 사용하여 특징을 추출하고, 추출된 특징을 GAN에 입력하여 이미지를 생성하는 방법을 제안한다. 실험 결과 기존 연구에서 사용되는 모델보다 inception score가 높았으며 육안으로 판단하였을 때 입력된 문장에서 특징을 잘 표현하는 이미지를 생성하였다. 또한, 긴 문장이 입력되었을 때에도 문장을 잘 표현하는 이미지를 생성하였다.
본 논문은 딥러닝 알고리즘을 적용한 깊은신경망을 이용하여 회전 객체의 분류 효율성을 높이기 위한 연구이다. 회전객체의 분류 실험을 위하여 데이터는 COIL-20을 사용하며 객체의 2/3영역을 학습시키고 1/3영역을 유추하여 분류한다. 연구에 이용된 3가지 분류기는 주성분 분석법을 이용해 데이터의 차원을 축소하면서 특징값을 추출하고 유클리디안 거리를 이용하여 분류하는 PCA분류기와 오류역전파 알고리즘을 이용하여 오류 에너지를 줄여가는 방식의 MLP분류기, 마지막으로 pre-training을 통하여 학습데이터의 관찰될 확률을 높여주고 fine-tuning으로 오류에너지를 줄여가는 방식의 딥러닝을 적용한 DBN분류기이다. 깊은신경망의 구조별 오류율을 확인하기 위하여 은닉층의 개수와 은닉뉴런의 개수를 변경해가며 실험하고 실제로 가장 낮은 오류율을 나타내는 구조를 기술한다. 가장 낮은 오류율을 보였던 분류기는 DBN을 이용한 분류기이다. 은닉층을 2개 갖는 깊은신경망의 구조로 매개 변수들을 인식에 도움이 되는 곳으로 이동 시켜 높은 인식률을 보여줬다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.