• Title/Summary/Keyword: 유량전환

Search Result 167, Processing Time 0.028 seconds

Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution (비스페놀 A 수용액의 대기압 플라즈마 처리)

  • Jo, Jin-Oh;Choi, Kyeong Yun;Gim, Suji;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • This work investigated the plasma treatment of aqueous bisphenol A (BPA) solution and mineralization pathways. For the effective contact between plasmatic gas and aqueous BPA solution, the plasma was created inside a porous ceramic tube, which was uniformly dispersed into the aqueous solution through micro-pores of the ceramic tube. Effects of the gas flow rate, applied voltage and treatment time on the decomposition of BPA were examined, and analyses using ultraviolet (UV) spectroscopy, ion chromatography and gas chromatography-mass spectrometry were also performed to elucidate mineralization mechanisms. The appropriate gas flow rate was around $1.0L\;min^{-1}$; when the gas flow rate was too high or too low, the BPA decomposition performance at a given electric power decreased. The increase in the voltage improves the BPA decomposition due to the increased electric power, but the energy required to remove BPA was similar, regardless of the voltage. Under the condition of $1.0L\;min^{-1}$ and 20.8 kV, BPA at an initial concentration of $10L\;min^{-1}$ (volume : 1 L) was successfully treated within 30 min. The intermediates produced by the attack of ozone and hydroxyl radicals on BPA were further oxidized to stable compounds such as acetate, formate and oxalate.

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

A Study on the Livestock Resources regarding on the Discharging Characteristics from Farm Land (농지 주입 시 배출특성에 대한 축분자원화물 연구)

  • Lim, Jai-Myug;Lee, Young-Sin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.91-102
    • /
    • 2009
  • In this study, to estimate the transforming (runoff and leachate) rate of the organic fertilizer made of livestock resources to farm land, laboratory scale test was conducted and the results were obtained as follows: The runoff volume from farm land showed the tendency of increase according to the increase of rainfall intensity. The most rainfall leachated into the underground at the rainfall intensity of 20mm/hr, and rainfall of 5L or less leachated at the rainfall intensity of > 32.4 mm/hr. This shows that surface runoff largely depends on the rainfall intensity when soil characteristic and hardness are similar in each site. When liquid compost was fertilized, the surface runoff was similar with the results from the reactor fertilized by compost, and leachate flow was found to be lower than compost. The runoff ratio of contaminant parameters from farm land were BOD 0.00003,, $COD_{cr}$ 0.00006, TN 0.00056, TP 0.00011, TOC 0.00005, Especially, the runoff ratio of TN showed 10 folds higher than other parameters. On the other hand, the runoff ratio of SS showed higher value of 0.001, and colloid particles of soil caused this result rather than the leachate from compost fertilizer. At all ranges of rainfall intensity, fertilizer removal ratio by farm land was found to be 94.9~98.4% for compost and 85.8~98.1% for liquid compost in terms of BOD. For TN, it resulted in 96.6~98.4% for compost and 97.2~98.5% for liquid compost, and thus the most fertilizer from livestock resources were shown to be reduced through farm land application.

Enhancement of Fermentative Hydrogen Production by Gas Sparging (기체 sparging에 의한 수소 발효의 효율 향상)

  • Kim, Dong-Hoon;Han, Sun-Kee;Kim, Sang-Hyoun;Bae, Byung-Uk;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.49-57
    • /
    • 2004
  • The effect of gas sparging on continuous fermentative $H_2$ production was investigated using external gases ($N_2$, $CO_2$) with various flow rates (100, 200, 300, 400 ml/min). Gas sparging showed a higher $H_2$ yield than no sparging, indicating that the decrease of $H_2$ partial pressure by gas sparging had a good effect on $H_2$ fermentation. Especially, $CO_2$ sparging was more effective in the reactor performance than $N_2$ sparging. The composition of butyrate, the main metabolic product of $H_2$ fermentation by Clostridium sp., was much higher in $CO_2$ sparging. $H_2$ production increased with increasing flow rate only in $CO_2$ sparging. The best performance was obtained by $CO_2$ sparging at 300 ml/min, resulting in the highest $H_2$ yield of 1.65 mol $H_2/mol$ hexoseconsumed and the maximum $H_2$ production of 6.77 L $H_2/g$ VSS/day. Compared to $N_2$ sparging, there could be another beneficial effect in $CO_2$ sparging apart from lowering down the $H_2$ partial pressure. High partial pressure of $CO_2$ had little effect on $H_2$ producing bacteria but inhibitory effect on other microorganisms like lactic acid bacteria and acetogens which were competitive with $H_2$ producing bacteria.

  • PDF

Characteristics of Carbon Dioxide Reduction in the Gliding Arc Plasma Discharge (글라이딩 아크 플라즈마 방전에 의한 이산화탄소 저감 특성)

  • Lim, Mun Sup;Kim, Seung Ho;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.205-209
    • /
    • 2015
  • CCU (Carbon Capture & Utilization) has a potential technology for the reduction and usage of carbon dioxide which is greenhouse gas emitting from a fossil fuel buring. To decompose the carbon dioxide, a three phase gliding arc plasma-catalytic reactor was designed and manufactured. Experiments of carbon dioxide reduction was performed by varying the gas flow rate with feeding the $CO_2$ only as well as the input power, the catalyst type and steam supply with respect to the injection of the mixture of $CO_2$ and $CH_4$. The $CO_2$ decomposition rate was 7.9% and the energy efficiency was $0.0013L/min{\cdot}W$ at a $CO_2$ flow rate of 12 L/min only. Carbon monoxide and oxygen was generated in accordance with the destruction of carbon dioxide. When the injection ratio of $CH_4/CO_2$ reached 1.29, the $CO_2$ destruction and $CH_4$ conversion rates were 37.8% and 56.6% respectively at a power supply of 0.76 kW. During the installation of $NiO/Al_2O_3$ catalyst bed, the $CO_2$ destruction and $CH_4$ conversion rates were 11.5% and 9.9% respectively. The steam supply parameter do not have any significant effects on the carbon dioxide decomposition.

Characteristics of LPG fuel Reforming in Plasma Reformer for Hydrogen Production (수소 생성을 위한 플라즈마 개질기에서의 LPG 연료의 개질 특성)

  • Park, Yunhwan;Lee, Deahoon;Kim, Changup;Kang, Kernyong
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.8-14
    • /
    • 2013
  • In this study, characteristics of the geometric design changes of plasma reformer for LPG fuelled vehicles were studied. To improve the yield of hydrogen, reformer 1st, and 2nd were designed. Secondary reformer compared to the primary reformer to increase the volume of the rear part of reformed gas having passed through the plasma and increased reaction time. To compare reforming results of two reformers, various experimental conditions such as, from partial oxidation to total oxidation conditions $O_2/C$ ratios, and total flow rate of 20, 30, 40, 50 lpm conditions, were varied. Results showed that with increasing $O_2/C$ ratios, LPG conversion rate increased, decreased hydrogen selectivity and hydrogen yield optimal point existed and secondary reformer 4.5 times larger than the primary reformer at the same flow rate to 4~14% increase in the yield of hydrogen.

Reforming of Hydrocarbon Fuel Using Water Jet Plasma (Water Jet 플라즈마를 이용한 탄화수소 연료 개질)

  • Kim, Seong-Cheon;Chun, Young-Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.9
    • /
    • pp.949-954
    • /
    • 2006
  • The purpose of this paper is to develop water jet plasma reactor and investigate the optimal condition of the syngas production by reforming of hydrocarbon fuel. Fuel used was propane and plasma was generated by arc discharge on water jet surface. Discharge slipping over the water surface has a number of advantages such as a source of short-wave and UV radiation, and it can be used for biological and chemical purification of water. Parametric screening studies were conducted, in which there were the variations of power ($0.18{\sim}0.74$ kW), water jet flow rate($38.4{\sim}65.6$ mL/min), electrode gap($5{\sim}15$ mm) and treatment time($2{\sim}20$ min). When the variations were 0.4 kW, 53.9 mL/min, 10 mm and 20 min respectively, result of maximum $H_2$ concentration was 61.6%, intermediates concentration were 6.1% and propane conversion rate was 99.8%.

The study of Development of Water Quality Information System (수질오염원정보화시스템 구축에 관한 연구)

  • Lee, Kyoung-Do;Min, Yoon-Ki;Lee, Soo-Moon;Jung, Seung-Kwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1354-1358
    • /
    • 2008
  • 수질오염관리 정책이 배출원 관리에서 유역공동체를 중심으로 한 사전 예방적 유역관리정책으로 변화됨에 따라 단순문서에 의한 오염원 자료관리 등의 업무처리체계로는 수질오염총량관리제 실시에 따른 실무지원이 어렵다. 이를 위해서는 수질오염총량관리기술지침에 근거한 하천, 호소 및 오염배출실태자료의 체계적 관리가 필요하며, 유역환경(단위유역, 소유역 등)에 대한 기초정보와 국가수질측정망 자료 및 자치단체 소하천 등의 수질자료의 연계활용이 필요하다. 따라서 경기도에서는 수질오염총량제 시행에 따른 유역관리현황 정보를 구축하고, 국가하천을 중심으로 한 중앙정부의 유역환경정보와 지방하천 및 소하천을 중심으로 한 지방자치단체의 유역환경정보를 통합, 운영함으로써 통합적인 유역관리지원 체계를 구축하고자 한다. 이를 통해 수질측정망 및 수위-유량 등 수문자료와 배수구역도, 단위유역도, 항공사진 등 지리정보를 활용한 유역관리정책 기반을 구축하고, 경기도 및 31개 시 군의 유역관리정책수립 및 시행에 필요한 논리적, 기술적 정보제공 시스템을 구축하고자 한다. 따라서 본 연구는 오염총량관리제도의 의무제 전환이 예측되는 상황에서 향후 광역시도간 광역계획 혹은 경기도내 시군의 오염총량관리계획에 능동적으로 대응하기 위해 경기도 차원의 수질측정망 자료, 오염원 실태조사 자료 및 수위-유량 등 수문자료와 배수-구역도, 토지이용도, 단위 유역도, 항공사진 등 GIS 자료 등을 데이터베이스화하여 경기도내 시 군 환경담당부서의 업무분석을 통해 업무에 활용되는 주요 환경자료에 대한 업무지원체계를 확립하기 위한 수질오염정보화 시스템을 구축하고 그 활용방안을 제시하는데 그 목적이 있다.

  • PDF

Process Simulation and Optimization of Fuel Cell System including CFD Modeling of Diesel Desulfurizer Unit Process (디젤탈황 단위공정의 CFD 모델링을 포함한 연료전지 시스템 공정설계 및 최적화)

  • Choi, Chang Yong;Im, Do Jin
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.421-429
    • /
    • 2018
  • We performed process and CFD simulations of a 100 kW fuel cell system. By process simulation, we derived the input flow rate of each unit process and the recycle diesel flow rate. Through CFD simulation considering the recycle diesel flow, more efficient operational condition was found. Using 6 desulfurize reactors, a TSA process for a 100 kW fuel cell system was successfully constructed. Heat interference between reactors was found to be negligible. These results will contribute to increasing the efficiency of fuel cell system and the developed desulfurizing module design will contribute to the clean petrochemical technology as well as fuel cell systems.

Catalytic Decomposition of Hydrogen Peroxide for Application on Micro Propulsion (마이크로 추력기 응용을 위한 과산화수소 촉매 분해 반응)

  • An Sung-Yong;Lee Jong-Kwang;Rang Seong-Min;Kwon Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2005
  • An experimental investigation of a microthruster that uses hydrogen peroxide as a monopropellant is described. The study comprises of preparation method of silver as a catalyst and performance evaluation of a mesoscale reactor. Reduction of silver in $H_2\;at\;500^{\circ}C$ resulted in the best reactivity of all the treatment method tested. A mesoscale reactor was built to find the optimum configuration for full decomposition of propellant. The catalyst bed was made of a glass wafer substrate sputtered with silver and had a length of 20 mm. We measured the conversion rate with varying feed rate of $H_2O_2$ and preheating temperature. With the feed rate of $H_2O_2$, the space time within the reactor varies as well. For the bed length of 20 mm, space time more than 480 s was required for full conversion.