• Title/Summary/Keyword: 유량감소계수

Search Result 217, Processing Time 0.019 seconds

Flow sensor using stress-balanced membrane and thin film thermocouple (스트레스균형이 이루어진 멤버레인 및 박막 열전대를 응용한 유체센서)

  • Ahn, Yeong-Bae;Kim, Jin-Sup;Kim, Myung-Gyoo;Lee, Jong-Hyun;Lee, Jung-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.51-59
    • /
    • 1996
  • A flow sensor has been fabricated by preparing thin film Pt-heater and Bi-Sb thermocouples array on 150 nm-$Si_{3}N_{4}$/300 nm-$SiO_{2}$/150 nm-$Si_{3}N_{4}$ dielectric diaphragm which has low thermal conductivity and balanced stress with silicon substrate for the purpose of improving the thermal isolation between heater and silicon substrate. Pt-heater showed nonlinear I-V characteristics due to the thermal isolation effect of the diaphragm. Its temperature coefficient of resistance was about $0.00378\;/^{\circ}C$ and Seebeck coefficient of Bi-Sb thermocouple was about $97\;{\mu}V/K$. The sensor showed that thermoelectric voltage decreased as thermal conductivity of gas increased, and flow sensitivity increased as heater voltage increased or as the distance between heater and thermocouple decreased. When heater voltage was about 2.5 V, $N_{2}$-flow sensitivity and thermal response time of the sensor were about $1.27\;mV{\cdot}(sccm)^{-1/2}$ and 0.13 sec., respectively.

  • PDF

Hospice and Palliative Care for the Terminal Patients with Colorectal Cancer (말기 대장직장암 환자의 호스피스 완화의료)

  • Hong, Young-Hwa;Lee, Choon-Sub;Lee, Ju-Ri;Lee, Jung-Ho;Kim, You-Jin;Lee, Tae-Kgyu;Moon, Do-Ho
    • Journal of Hospice and Palliative Care
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • Purpose: Colorectal ranter is the 4th leading cause of cancer death in Korea and the prevalence is increasing continuously. This study was aimed to figure out the problems through the clinical consideration about terminal colorectal ranter patients who had died in hospice unit. Methods: We retrospectively reviewed the medical records in 78 patients with colorectal ranter who had admitted, received palliative care, and died in a hospice unit between April 2003 and November 2006. Results: The median age of patients was 59.6 years with 45 men (58%) and 24 women (42%). The median survival in hospice and palliative care was 36 days. The median hospitalization was 22 days. The most prevalent reason for admission was pain (38 patients, 49%), and the most common symptom was also pain (70 patients, 90%). Forty eight patients (62%) took analgesics before hospice referral. Twenty seven patients (65%) of 45 patients with intestinal obstruction have been performed palliative procedures. Median survival of patients with palliative procedure was higher than that of no palliative procedure group (47 days vs 19 days, P-value=0.005). Conclusion: The duration of hospice and palliative care was not enough to care the terminal colorectal cancer. Therefore, we suggest that proper education and information should be provided to physician, patients and their family members for effective hospice and palliative care.

  • PDF

Development of heat exchanger by the utilization of underground water. I - Design for plat fin tube - (지하수 이용을 위한 열교환기 개발. I - 냉각핀의 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger, parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. of The registration design : 0247164, by Korean Intellectual property Office). The fin of exchanger was design of the granulated surface for minimizing fouling factor and dew forms, and also placed parallel to the tube in order to minimized the resistance of flows. 1. Aloo-heat was designed to have 0.03m for inside diameter, 0.036m for outside diameter of tube, 0.0012m for thickness of fin and 0.032m for length of plat fin. 2. t was also designed to have 1.5248m2/m for outside area of heat transfer, 0.0942m2/m for inside area contacting hot liquid, and the ratio (Ra) was 16.1869. 3. Efficiency of the fin was 93 percentage when fin length was 0.032m, and the fin thickness satisfied equation $\frac{h{\rho}}{k}$< 0.2 when it was 0.0012m. 4. According to the performance test of Aloo-heat, as the temperature and rate increased, the heating value also increased, heating value was 504kJ/h·m and 6,048kJ/h·m when it was 60℃, 10 𝑙/min and 80℃, 40 𝑙/min respectively. 5. The test of heating value was confident, because correlation value(R2) was 0.9898 for the temperature and 0.9721 for flow rate of hot liquid, respectively.

Effects of Swirl and Combustion Parameters on the Performance and Emission in a Turbocharged D.1. Diesel Engine (선회유동 및 연소인자가 터보과급 디젤엔진의 성능 및 배기가스특성에 미치는 영향)

  • 윤준규;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.90-98
    • /
    • 2002
  • The effects of swirl and combustion parameters on the performance and emission in a turbo-charged D.I. diesel engine of the displacement 9.4L were studied experimentally in this paper. Generally the swirl in the combustion process of diesel engine promotes mixing of the injection fuel and the intake air. It is a major factor to improve the engine performance because the fuel consumption and NO$_{x}$ is trade-off according to the high temperature and high pressure of combustion gas in a turbocharged D.I. diesel engine, it's necessary to thinking over the intake and exhaust system, the design of combustion bowl and so on. In order to choose a turbocharger of appropriate capacity. As a result of steady flow test, when the swirl ratio is increased, the mean flow coefficient is decreased, whereas the gulf factor is increased. Also, through engine test its can be expected to meet performance and emissions by optimizing the main parameter's; the swirl ratio is 2.43, injection timing is BTDC 13$^{\circ}$ CA, compression ratio is 16, combustion bowl is re-entrant 5$^{\circ}$, nozzle hole diameter is $\Phi$0.28*6, turbocharger is GT40 model which are compressor A/R 0.58 and turbine A/R 1.19.

Effect of Pore Structure of Activated Carbon Fiber on Mechanical Properties (활성탄소섬유의 기공구조가 기계적 특성에 미치는 영향)

  • Choi, Yun Jeong;Lee, Young-Seak;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.318-324
    • /
    • 2018
  • In this study, PAN (polyacrylonitrile) based activated carbon fibers were prepared by water vapor activation method which is a physical activation method. Activation was performed with temperature and time as parameters. When the activation temperature reached 700, 750 and $800^{\circ}C$, the activation was carried out under the condition of a water vapor flow rate of 200 ml/min. In order to analyze the pore structure of activated carbon fibers, the specific surface area ($S_{BET}$) was measured by the adsorption/desorption isotherm of nitrogen gas and AFM analysis was performed for the surface analysis. Tensile tests were also conducted to investigate the effect of the pore structure on mechanical properties of fibers. As a result, the $S_{BET}$ of fibers after the activation showed a value of $448{\sim}902m^2/g$, the tensile strength decreased 58.16~84.92% and the tensile modulus decreased to 69.81~83.89%.

Experimental Study on Performance of Mini -Sprinkler -( 1 ) Sprinkling Flow Rate and Sprinkling Intensity Pattern (미니 스프링클러의 살수 성능실험-(1)살수량과 거리별 살수강도)

  • 서상룡;유수남;성제훈
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.194-201
    • /
    • 1996
  • A series of experiments to analyse and to compare performance of various types of mini-sprinkler was carried out. Twelve kinds of the sprinkler, which have various sizes of nozzle orifice diameter and structures of spreader, were selected to be tested. Flow (water sprinkling) rate and sprinkling intensity pattern from a sprinkler were measured as a first part of this study, and the results are as follows. Sprinkler flow rate of various sizes of nozzle orifice and applied water pressures could be predicted by Torricelli's theorem. Discharge coefficients of the Torricelli's theorem for the sprinkler nozzle of various sizes were determined by the experiment as 0.90- 0.95, 0.80-0.82 and 0.76-0.79 for 0.8, 1.2 and 1.6 mm of nozzle orifice diameter, respectively. Experiments on sprinkling intensity pattern resulted that nozzle orifice diameter and applied water pressure are major variables for uniformity of the sprinkling intensity. More uniform sprinklering patterns were noted with smaller nozzle orifice diameter of a sprinkler and at lower sprinkling pressure. Besides the variables, structure of spreader of a sprinkler is also an important variable for the uniformity of sprinkling intensity.

  • PDF

Flow Field in Volute for Various Operating Conditions of Centrifugal Compressor (원심압축기의 운전점에 따른 벌류트 내부 유동장)

  • Kang, Kyung Jun;Shin, You Hwan;Kim, Kwang Ho;Lee, Yoon Pyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.531-538
    • /
    • 2013
  • The primary function of centrifugal compressor volute is to flow from the impeller and diffuser to the pipe system. The strength of the scroll vortex and flow pattern in the volute vary with the operating point. This is largely caused by the interaction between the impeller and the volute flow fields. The recirculation flow around the tongue and the scroll vortex can be used to understand the characteristics of the volute flow at off-design points. The present study aims to find the characteristics of a flow pattern in the diffuser and volute of a centrifugal compressor from the rectangular cross section of the volute. Measurements are carried out using PIV. The results obtained in this study show that the separation region around the tongue is reduced and that the recirculation flow increases as the flow coefficient decreases.

An experimental study for the prediction of combustion performance of the Unlike Impinging Quadlet Injector (충돌형 Quadlet 인젝터의 연소성능 예측에 관한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Han, J.S.;Kim, S.J.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.44-50
    • /
    • 1999
  • For the prediction of combustion performance of the Unlike Impinging Quadlet Injector (OOOF type), mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity were obtained from the cold test. Water/kerosene were used for simulants, The momentum ratio of oxidizer and fuel were mixing correlating parameter. Orifice discharge coefficient, spray pattern and mass distribution were measured. As a result, invasion-depth had strong effect on mixing efficiency, mixing characteristic velocity, and efficiency of mixing characteristic velocity. Mixing efficiency and efficiency of mixing characteristic velocity showed maximum value for momentum ratio 1.67(TMR = 2.5), and fuel rich state showed larger decreasing ratio than oxidizer rich state.

  • PDF

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows (아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구)

  • 김정훈;안규복;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • Effects of the orifice internal flow such as cavitation and hydraulic flip on transverse injection into subsonic crossflows have been studied. The liquid column breakup length and the liquid column trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance, and were compared with previous results. It is found that cavitation bubbles, which occur inside the sharp-edged orifice, make the liquid jet very turbulent and especially in the orifices with L/d = 5 hydraulic flip appear as cavitation bubbles are emitted from the orifice. The breakup length is shorter as cavitation bubbles grows and hydraulic flip appears. However, the liquid column trajectories normalized by the effective diameter and the effective momentum ratio have a similar tendency irrespective of cavitation and hydraulic flip.

Numerical Simulation of the Coalescence of Air Bubbles in Turbulent Shear Flow: 2. Model Application (난류전단 흐름에서의 기포응집에 관한 수치모의: 2. 모형의 적용)

  • Jun, Kyung Soo;Jain, Subhash C.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1365-1373
    • /
    • 1994
  • A Monte-Carlo simulation model, developed to predict size distribution of air bubbles in turbulent shear flow, is applied to a laboratory-scale problem. Sensitivity to various numerical and physical parameters of the model is analyzed. Practical applicability of the model is explored through comparisons of results with experimental measurements. Bubble size increases with air-water discharge ratio and friction factor. Bubble size decreases with increasing mean flow velocity, but the total bubble surface area in the aeration region remains fairly constant. The effect on bubble size distribution of the longitudinal length increment in the simulation model is negligible. A larger radial length increment yields more small and large bubbles and fewer in between. Bubble size distribution is significantly affected by its initial distribution and the location of air injection. Collision efficiency is introduced to explain the discrepancy between collisions with and without coalescence.

  • PDF